Augmenting Multi-Party Face-to-Face Interactions Amongst Strangers with User Generated Content

Augmenting Multi-Party Face-to-Face Interactions Amongst Strangers with User Generated Content We present the results of an investigation into the role of curated representations of self, which we term Digital Selfs, in augmented multi-party face-to-face interactions. Advancements in wearable technologies (such as Head-Mounted Displays) have renewed interest in augmenting face-to-face interaction with digital content. However, existing work focuses on algorithmic matching between users, based on data-mining shared interests from individuals’ social media accounts, which can cause information that might be inappropriate or irrelevant to be disclosed to others. An alternative approach is to allow users to manually curate the digital augmentation they wish to present to others, allowing users to present those aspects of self that are most important to them and avoid undesired disclosure. Through interviews, video analysis, questionnaires and device logging, of 23 participants in 6 multi-party gatherings where individuals were allowed to freely mix, we identified how users created Digital Selfs from media largely outside existing social media accounts, and how Digital Selfs presented through HMDs were employed in multi-party interactions, playing key roles in facilitating strangers to interact with each other. We present guidance for the design of future multi-party digital augmentations in collaborative scenarios. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Computer Supported Cooperative Work (CSCW) Springer Journals

Augmenting Multi-Party Face-to-Face Interactions Amongst Strangers with User Generated Content

Loading next page...
 
/lp/springer_journal/augmenting-multi-party-face-to-face-interactions-amongst-strangers-do2TlezJs7
Publisher
Springer Netherlands
Copyright
Copyright © 2017 by The Author(s)
Subject
Computer Science; Computer Science, general; User Interfaces and Human Computer Interaction; Psychology, general; Social Sciences, general
ISSN
0925-9724
eISSN
1573-7551
D.O.I.
10.1007/s10606-017-9281-1
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial