Augmenting Multi-Party Face-to-Face Interactions Amongst Strangers with User Generated Content

Augmenting Multi-Party Face-to-Face Interactions Amongst Strangers with User Generated Content We present the results of an investigation into the role of curated representations of self, which we term Digital Selfs, in augmented multi-party face-to-face interactions. Advancements in wearable technologies (such as Head-Mounted Displays) have renewed interest in augmenting face-to-face interaction with digital content. However, existing work focuses on algorithmic matching between users, based on data-mining shared interests from individuals’ social media accounts, which can cause information that might be inappropriate or irrelevant to be disclosed to others. An alternative approach is to allow users to manually curate the digital augmentation they wish to present to others, allowing users to present those aspects of self that are most important to them and avoid undesired disclosure. Through interviews, video analysis, questionnaires and device logging, of 23 participants in 6 multi-party gatherings where individuals were allowed to freely mix, we identified how users created Digital Selfs from media largely outside existing social media accounts, and how Digital Selfs presented through HMDs were employed in multi-party interactions, playing key roles in facilitating strangers to interact with each other. We present guidance for the design of future multi-party digital augmentations in collaborative scenarios. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Computer Supported Cooperative Work (CSCW) Springer Journals

Augmenting Multi-Party Face-to-Face Interactions Amongst Strangers with User Generated Content

Loading next page...
 
/lp/springer_journal/augmenting-multi-party-face-to-face-interactions-amongst-strangers-do2TlezJs7
Publisher
Springer Journals
Copyright
Copyright © 2017 by The Author(s)
Subject
Computer Science; Computer Science, general; User Interfaces and Human Computer Interaction; Psychology, general; Social Sciences, general
ISSN
0925-9724
eISSN
1573-7551
D.O.I.
10.1007/s10606-017-9281-1
Publisher site
See Article on Publisher Site

Abstract

We present the results of an investigation into the role of curated representations of self, which we term Digital Selfs, in augmented multi-party face-to-face interactions. Advancements in wearable technologies (such as Head-Mounted Displays) have renewed interest in augmenting face-to-face interaction with digital content. However, existing work focuses on algorithmic matching between users, based on data-mining shared interests from individuals’ social media accounts, which can cause information that might be inappropriate or irrelevant to be disclosed to others. An alternative approach is to allow users to manually curate the digital augmentation they wish to present to others, allowing users to present those aspects of self that are most important to them and avoid undesired disclosure. Through interviews, video analysis, questionnaires and device logging, of 23 participants in 6 multi-party gatherings where individuals were allowed to freely mix, we identified how users created Digital Selfs from media largely outside existing social media accounts, and how Digital Selfs presented through HMDs were employed in multi-party interactions, playing key roles in facilitating strangers to interact with each other. We present guidance for the design of future multi-party digital augmentations in collaborative scenarios.

Journal

Computer Supported Cooperative Work (CSCW)Springer Journals

Published: May 29, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off