Attractors and Long Time Behavior of von Karman Thermoelastic Plates

Attractors and Long Time Behavior of von Karman Thermoelastic Plates This paper undertakes a study of asymptotic behavior of solutions corresponding to von Karman thermoelastic plates. A distinct feature of the work is that the model considered has no added dissipation —particularly mechanical dissipation typically added to plate equation when long time-behavior is considered. Thus, the model consists of undamped oscillatory plate equation strongly coupled with heat equation. Nevertheless we are able to show that the ultimate (asymptotic) behavior of the von Karman evolution is described by finite dimensional global attractor. In addition, the obtained estimate for the dimension and the size of the attractor are independent of the rotational inertia parameter γ and heat/thermal capacity κ , where the former is known to change the character of dynamics from hyperbolic ( γ >0) to parabolic like ( γ =0). Other properties of attractors such as additional smoothness and upper-semicontinuity with respect to parameters γ and κ are also established. The main ingredients of the proofs are (i) sharp regularity of Airy’s stress function, and (ii) newly developed (Chueshov and Lasiecka in Memoirs of AMS, in press) “compensated” compactness methods applicable to non-compact dynamics. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Mathematics and Optimization Springer Journals

Attractors and Long Time Behavior of von Karman Thermoelastic Plates

Loading next page...
 
/lp/springer_journal/attractors-and-long-time-behavior-of-von-karman-thermoelastic-plates-h48vzKYcZ2
Publisher
Springer-Verlag
Copyright
Copyright © 2008 by Springer Science+Business Media, LLC
Subject
Mathematics; Numerical and Computational Methods ; Mathematical Methods in Physics; Mathematical and Computational Physics; Systems Theory, Control; Calculus of Variations and Optimal Control; Optimization
ISSN
0095-4616
eISSN
1432-0606
D.O.I.
10.1007/s00245-007-9031-8
Publisher site
See Article on Publisher Site

Abstract

This paper undertakes a study of asymptotic behavior of solutions corresponding to von Karman thermoelastic plates. A distinct feature of the work is that the model considered has no added dissipation —particularly mechanical dissipation typically added to plate equation when long time-behavior is considered. Thus, the model consists of undamped oscillatory plate equation strongly coupled with heat equation. Nevertheless we are able to show that the ultimate (asymptotic) behavior of the von Karman evolution is described by finite dimensional global attractor. In addition, the obtained estimate for the dimension and the size of the attractor are independent of the rotational inertia parameter γ and heat/thermal capacity κ , where the former is known to change the character of dynamics from hyperbolic ( γ >0) to parabolic like ( γ =0). Other properties of attractors such as additional smoothness and upper-semicontinuity with respect to parameters γ and κ are also established. The main ingredients of the proofs are (i) sharp regularity of Airy’s stress function, and (ii) newly developed (Chueshov and Lasiecka in Memoirs of AMS, in press) “compensated” compactness methods applicable to non-compact dynamics.

Journal

Applied Mathematics and OptimizationSpringer Journals

Published: Oct 1, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off