Attenuation of a field Sendai virus isolate through egg-passages is associated with an impediment of viral genome replication in mouse respiratory cells

Attenuation of a field Sendai virus isolate through egg-passages is associated with an impediment... We investigated the mechanisms responsible for attenuation of mouse pathogenicity of Sendai virus (SeV) through passages in eggs. A highly virulent clone, E0, derived from the field SeV Hamamatsu strain, was successively passaged in hen‘s eggs. Analysis of the mouse lethal dose 50% (MLD 50 ) of virus clones obtained from the viruses at egg-passages 1, 15, 30 and 50 demonstrated that attenuation of E0 by egg-passage occurred due to the gradual appearance of and replacement by virus variants possessing higher MLD 50 . Comparison of viral replication in the mouse lung and mouse pathogenicity with the representative SeV clones, E0, E15cl2, E30cl2 and E50cl9, obtained from the respective egg-passages revealed that the low pathogenicity of the egg-passaged clones was due to poor multi-cycle viral replication in the lung. Furthermore, MLD 50 s of the SeV clones were found to be negatively correlated with the replication capability in primary mouse pulmonary epithelial (MPE) cells; the egg-passaged clones with more attenuated phenotypes showed lower replication capability in MPE cells. In the MPE cells infected with the SeV clones at m.o.i. 10, however, viral protein and mRNA syntheses of the egg-passaged clones were enhanced or comparable to those of the parental E0 clone at 1 day and 2 days post infection (p.i.) but decreased more rapidly thereafter. In contrast, viral genome synthesis of the egg-passaged clones in the cells at 2 days p.i. was several times lower than that of E0. These results strongly suggest that attenuation of a virulent field SeV strain by egg-passage occurs due to the appearance and selection of virus variants possessing poor propagation capacity in mouse respiratory epithelial cells, which is caused primarily by an impediment of viral genome replication. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

Attenuation of a field Sendai virus isolate through egg-passages is associated with an impediment of viral genome replication in mouse respiratory cells

Loading next page...
 
/lp/springer_journal/attenuation-of-a-field-sendai-virus-isolate-through-egg-passages-is-OtARNvi3Fe
Publisher
Springer-Verlag
Copyright
Copyright © 2001 by Springer-Verlag/Wien
Subject
Legacy
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s007050170123
Publisher site
See Article on Publisher Site

Abstract

We investigated the mechanisms responsible for attenuation of mouse pathogenicity of Sendai virus (SeV) through passages in eggs. A highly virulent clone, E0, derived from the field SeV Hamamatsu strain, was successively passaged in hen‘s eggs. Analysis of the mouse lethal dose 50% (MLD 50 ) of virus clones obtained from the viruses at egg-passages 1, 15, 30 and 50 demonstrated that attenuation of E0 by egg-passage occurred due to the gradual appearance of and replacement by virus variants possessing higher MLD 50 . Comparison of viral replication in the mouse lung and mouse pathogenicity with the representative SeV clones, E0, E15cl2, E30cl2 and E50cl9, obtained from the respective egg-passages revealed that the low pathogenicity of the egg-passaged clones was due to poor multi-cycle viral replication in the lung. Furthermore, MLD 50 s of the SeV clones were found to be negatively correlated with the replication capability in primary mouse pulmonary epithelial (MPE) cells; the egg-passaged clones with more attenuated phenotypes showed lower replication capability in MPE cells. In the MPE cells infected with the SeV clones at m.o.i. 10, however, viral protein and mRNA syntheses of the egg-passaged clones were enhanced or comparable to those of the parental E0 clone at 1 day and 2 days post infection (p.i.) but decreased more rapidly thereafter. In contrast, viral genome synthesis of the egg-passaged clones in the cells at 2 days p.i. was several times lower than that of E0. These results strongly suggest that attenuation of a virulent field SeV strain by egg-passage occurs due to the appearance and selection of virus variants possessing poor propagation capacity in mouse respiratory epithelial cells, which is caused primarily by an impediment of viral genome replication.

Journal

Archives of VirologySpringer Journals

Published: May 1, 2001

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off