AtSAP18, An Orthologue of Human SAP18, is Involved in the Regulation of Salt Stress and Mediates Transcriptional Repression in Arabidopsis

AtSAP18, An Orthologue of Human SAP18, is Involved in the Regulation of Salt Stress and Mediates... In yeast and mammalian systems, it is well established that transcriptional down-regulation by DNA-binding repressors involves core histone deacetylation, mediated by their interaction within a complex containing histone deacetylase (e.g. HDA1), as well as various other proteins (e.g. SIN3, SAP18, SAP30, and RbAp46). Here we identify that a Arabidopsis thaliana gene related in sequence to SAP18, designated AtSAP18, functions in transcription regulation in plants subjected to salt stress. The AtSAP18 loss- of-function mutant is more sensitive to NaCl, and is impaired in chlorophyll synthesis as compared to the wild-type. Using GST pull-down, two-hybrid, and transient transcription assays, we have characterized SAP18 and HDA1 orthologues and provide evidence that SAP18 and HDA1 function as transcriptional repressors. We further demonstrate that they associate with Ethylene-Responsive Element binding Factors (ERFs) to create a hormone-sensitive multimeric repressor complex under conditions of environmental stress. Our results indicate that AtSAP18 functions to link the HDA complex to transcriptional repressors that are bound to chromatin in a sequence-specific manner, thereby providing the specificity of signal transduction accompanying transcriptional repression under stress conditions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

AtSAP18, An Orthologue of Human SAP18, is Involved in the Regulation of Salt Stress and Mediates Transcriptional Repression in Arabidopsis

Loading next page...
 
/lp/springer_journal/atsap18-an-orthologue-of-human-sap18-is-involved-in-the-regulation-of-XeXzrM00MX
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2006 by Springer
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-005-3880-9
Publisher site
See Article on Publisher Site

Abstract

In yeast and mammalian systems, it is well established that transcriptional down-regulation by DNA-binding repressors involves core histone deacetylation, mediated by their interaction within a complex containing histone deacetylase (e.g. HDA1), as well as various other proteins (e.g. SIN3, SAP18, SAP30, and RbAp46). Here we identify that a Arabidopsis thaliana gene related in sequence to SAP18, designated AtSAP18, functions in transcription regulation in plants subjected to salt stress. The AtSAP18 loss- of-function mutant is more sensitive to NaCl, and is impaired in chlorophyll synthesis as compared to the wild-type. Using GST pull-down, two-hybrid, and transient transcription assays, we have characterized SAP18 and HDA1 orthologues and provide evidence that SAP18 and HDA1 function as transcriptional repressors. We further demonstrate that they associate with Ethylene-Responsive Element binding Factors (ERFs) to create a hormone-sensitive multimeric repressor complex under conditions of environmental stress. Our results indicate that AtSAP18 functions to link the HDA complex to transcriptional repressors that are bound to chromatin in a sequence-specific manner, thereby providing the specificity of signal transduction accompanying transcriptional repression under stress conditions.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 10, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off