ATP-Induced Shape Change of Nuclear Pores Visualized with the Atomic Force Microscope

ATP-Induced Shape Change of Nuclear Pores Visualized with the Atomic Force Microscope Bidirectional transport of molecules between nucleus and cytoplasm through the nuclear pore complexes (NPCs) spanning the nuclear envelope plays a fundamental role in cell function and metabolism. Nuclear import of macromolecules is a two-step process involving initial recognition of targeting signals, docking to the pore and energy-driven translocation. ATP depletion inhibits the translocation step. The mechanism of translocation itself and the conformational changes of the NPC components that occur during macromolecular transport, are still unclear. The present study investigates the effect of ATP on nuclear pore conformation in isolated nuclear envelopes from Xenopus laevis oocytes using the atomic force microscope. All experiments were conducted in a saline solution mimicking the cytosol using unfixed nuclear envelopes. ATP (1 mm) was added during the scanning procedure and the resultant conformational changes of the NPCs were directly monitored. Images of the same nuclear pores recorded before and during ATP exposure revealed dramatic conformational changes of NPCs subsequent to the addition of ATP. The height of the pores protruding from the cytoplasmic surface of the nuclear envelope visibly increased while the diameter of the pore opening decreased. The observed changes occurred within minutes and were transient. The slow-hydrolyzing ATP analogue, ATP-γ-S, in equimolar concentrations did not exert any effects. The ATP-induced shape change could represent a nuclear pore ``contraction.'' http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

ATP-Induced Shape Change of Nuclear Pores Visualized with the Atomic Force Microscope

Loading next page...
 
/lp/springer_journal/atp-induced-shape-change-of-nuclear-pores-visualized-with-the-atomic-evxzPeUqR1
Publisher
Springer-Verlag
Copyright
Copyright © Inc. by 1998 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s002329900377
Publisher site
See Article on Publisher Site

Abstract

Bidirectional transport of molecules between nucleus and cytoplasm through the nuclear pore complexes (NPCs) spanning the nuclear envelope plays a fundamental role in cell function and metabolism. Nuclear import of macromolecules is a two-step process involving initial recognition of targeting signals, docking to the pore and energy-driven translocation. ATP depletion inhibits the translocation step. The mechanism of translocation itself and the conformational changes of the NPC components that occur during macromolecular transport, are still unclear. The present study investigates the effect of ATP on nuclear pore conformation in isolated nuclear envelopes from Xenopus laevis oocytes using the atomic force microscope. All experiments were conducted in a saline solution mimicking the cytosol using unfixed nuclear envelopes. ATP (1 mm) was added during the scanning procedure and the resultant conformational changes of the NPCs were directly monitored. Images of the same nuclear pores recorded before and during ATP exposure revealed dramatic conformational changes of NPCs subsequent to the addition of ATP. The height of the pores protruding from the cytoplasmic surface of the nuclear envelope visibly increased while the diameter of the pore opening decreased. The observed changes occurred within minutes and were transient. The slow-hydrolyzing ATP analogue, ATP-γ-S, in equimolar concentrations did not exert any effects. The ATP-induced shape change could represent a nuclear pore ``contraction.''

Journal

The Journal of Membrane BiologySpringer Journals

Published: May 15, 1998

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off