Atomic Force Microscopy Imaging of Bacillus thuringiensis Cry1 Toxins Interacting with Insect Midgut Apical Membranes

Atomic Force Microscopy Imaging of Bacillus thuringiensis Cry1 Toxins Interacting with Insect... Atomic force microscopy was used to image Bacillus thuringiensis (Bt) toxins interacting with their natural targets, Manduca sexta midgut brush border membranes (BBMs), as well as with dipalmitoylphosphatidylcholine-dioleoylphosphatidylcholine (DPPC-DOPC) solid-supported lipid bilayers. In lipid bilayers, Cry1Aa formed structures 30–60 nm wide and 3–7 nm high, mostly at the interface of domains formed by the two different lipids or at the edge of DOPC-enriched domains. BBM vesicles, in the absence of toxin, formed flat membrane fragments of up to 25 μm2 and 4.2 nm high, with irregular embedded structures. After incubation with Cry1Aa, Cry1Ac and Cry1C, which are active against M. sexta, new structures, 35 nm wide and 5.1–6.7 nm high, were observed in some membrane fragments, sometimes only in particular regions. Their density, which reached a plateau within 4 h, was toxin- and concentration-dependent. The structures formed by Cry1Ac were often grouped into dense, two-dimensional arrangements. No such specific interactions were observed with Cry1Ba, which is inactive against M. sexta. This study provides the first visual demonstration of specific interactions of Bt toxins with insect midgut BBMs at the nanometric scale. The observed structures likely represent the protein complexes forming functional Bt pores in target membranes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Atomic Force Microscopy Imaging of Bacillus thuringiensis Cry1 Toxins Interacting with Insect Midgut Apical Membranes

Loading next page...
 
/lp/springer_journal/atomic-force-microscopy-imaging-of-bacillus-thuringiensis-cry1-toxins-9p4Wy0vGNV
Publisher
Springer-Verlag
Copyright
Copyright © 2008 by Springer Science+Business Media, LLC
Subject
Life Sciences; Human Physiology ; Biochemistry, general
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-008-9106-8
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial