Atom–photon entanglement beyond the multi-photon resonance condition

Atom–photon entanglement beyond the multi-photon resonance condition Atom–photon entanglement between the dressed atom and its spontaneous emission is studied in a near-degenerate three-level V-type atomic system in multi-photon resonance condition and beyond it. Taking into account the quantum interference due to the spontaneous emission, the density matrix equations of motion are numerically calculated in two-photon resonance condition and beyond it. The dynamical behavior of these two subsystems is investigated by using the von Neumann entropy. We apply the Floquet decomposition to the equations of motion to solve this time-dependent problem and identify the contribution of the different scattering processes to the atom–photon entanglement. In addition, the impact of the various nonlinear effects on the atom–photon entanglement is introduced in two-photon resonance condition. It is shown that the degree of entanglement (DEM) can be controlled via the intensity and the detuning of the coupling field as well as the quantum interference induced by spontaneous emission. We find that vacuum-induced interference has a major role in phase sensitivity of the DEM; however, beyond the two-photon resonance condition the DEM does not depend on the relative phase of the applied fields. Our results can be used for quantum information processing via entanglement. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Atom–photon entanglement beyond the multi-photon resonance condition

Loading next page...
 
/lp/springer_journal/atom-photon-entanglement-beyond-the-multi-photon-resonance-condition-9XnWNdFXXv
Publisher
Springer US
Copyright
Copyright © 2015 by Springer Science+Business Media New York
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-015-1168-9
Publisher site
See Article on Publisher Site

References

  • Can quantum-mechanical description of physical reality be considered complete?
    Einstein, A; Podolsky, B; Rosen, N

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial