Atmospheric low swirl burner flow characterization with stereo PIV

Atmospheric low swirl burner flow characterization with stereo PIV The lean premixed prevaporized (LPP) burner concept is now used in most of the new generation gas turbines to reduce flame temperature and pollutants by operating near the lean blow-off limit. The common strategy to assure stable combustion is to resort to swirl stabilized flames in the burner. Nevertheless, the vortex breakdown phenomenon in reactive swirling flows is a very complex 3D mechanism, and its dynamics are not yet completely understood. Among the available measurement techniques to analyze such flows, stereo PIV (S-PIV) is now a reliable tool to quantify the instantaneous three velocity components in a plane (2D–3C). It is used in this paper to explore the reactive flow of a small scale, open to atmosphere, LPP burner (50 kW). The burner is designed to produce two distinct topologies (1) that of a conventional high swirl burner and (2) that of a low swirl burner. In addition, the burner produces a lifted flame that allows a good optical access to the whole recirculation zone in both topologies. The flow is studied over a wide range of swirl and Reynolds numbers at different equivalence ratios. Flow statistics are presented for 1,000 S-PIV snapshots at each configuration. In both reactive and cold nonreactive flow, stability diagrams define the domains of the low and high swirl topologies. Due to the relatively simple conception of the physical burner, this information can be easily used for the validation of CFD computations of the burner flow global structure. Near field pressure measurements reveal the presence of peaks in the power spectra, which suggests the presence of periodical coherent features for almost all configurations. Algorithms have been developed to identify and track large periodic traveling coherent structures from the statistically independent S-PIV realizations. Flow temporal evolution is reconstructed with a POD-based method, providing an additional tool for the understanding of flow topologies and numerical codes validation. Experiments in Fluids Springer Journals

Atmospheric low swirl burner flow characterization with stereo PIV

Loading next page...
Copyright © 2009 by Springer-Verlag
Engineering; Engineering Thermodynamics, Heat and Mass Transfer; Fluid- and Aerodynamics; Engineering Fluid Dynamics
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial