Atmospheric heavy metal deposition in agro-ecosystems in China

Atmospheric heavy metal deposition in agro-ecosystems in China Atmospheric deposition has become one of the main sources of heavy metals in crops in developed and industrial zones in China for the past several years. However, lack of data of the agro-ecosystems on the vast areas of China makes it difficult to assess the impacts of air pollution on the heavy metal accumulation in crops. In this study, with deposit samples from 67 sites located at different agro-ecosystems (typical, factory nearby, town nearby, roadside, and remote) of four natural regions [Huanghuai (HH), Southeast (SE), Southwest (SW) and upper-mid Yangzi River (Up-mid YR)], atmospheric heavy metal deposition in agro-ecosystems on a large scale in China was studied. The results showed that during the growing season, the deposition fluxes of Cr, Ni, As, Cd, and Pb in typical agro-ecosystems were 0.60–36.86, 0.65–25.37, 0.05–8.88, 0.12–5.81, and 0.43–35.63 μg m−2 day−1, respectively, which varied greatly between the four different regions. The average deposition fluxes of Cr, Ni, Cd, and Pb in the HH region, as well as the fluxes of As in the SW region, were significantly higher than those in the SE region. Heavy metal deposition rates among agro-ecosystems were very similar, except for the sites around cement factory in flat HH region. In mountainous SW region, however, deposition rates varied widely with sites nearby towns relatively higher and remote regions much lower. Higher correlation coefficients were observed between Cr, As, Pb, and Ni deposition rates, suggesting that they had similar sources. Samples from the SW and SE regions exhibited higher 207Pb/206Pb and 208Pb/206Pb ratios than those from the HH and Up-mid YR regions. Airborne Pb in SW agro-ecosystems were mainly derived from vehicle exhaust and local smelting, whereas that in the HH region from burning of northern Chinese coal. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Science and Pollution Research Springer Journals

Loading next page...
 
/lp/springer_journal/atmospheric-heavy-metal-deposition-in-agro-ecosystems-in-china-Dx0D0YxDRZ
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Environment; Environment, general; Environmental Chemistry; Ecotoxicology; Environmental Health; Atmospheric Protection/Air Quality Control/Air Pollution; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution
ISSN
0944-1344
eISSN
1614-7499
D.O.I.
10.1007/s11356-017-0892-3
Publisher site
See Article on Publisher Site

Abstract

Atmospheric deposition has become one of the main sources of heavy metals in crops in developed and industrial zones in China for the past several years. However, lack of data of the agro-ecosystems on the vast areas of China makes it difficult to assess the impacts of air pollution on the heavy metal accumulation in crops. In this study, with deposit samples from 67 sites located at different agro-ecosystems (typical, factory nearby, town nearby, roadside, and remote) of four natural regions [Huanghuai (HH), Southeast (SE), Southwest (SW) and upper-mid Yangzi River (Up-mid YR)], atmospheric heavy metal deposition in agro-ecosystems on a large scale in China was studied. The results showed that during the growing season, the deposition fluxes of Cr, Ni, As, Cd, and Pb in typical agro-ecosystems were 0.60–36.86, 0.65–25.37, 0.05–8.88, 0.12–5.81, and 0.43–35.63 μg m−2 day−1, respectively, which varied greatly between the four different regions. The average deposition fluxes of Cr, Ni, Cd, and Pb in the HH region, as well as the fluxes of As in the SW region, were significantly higher than those in the SE region. Heavy metal deposition rates among agro-ecosystems were very similar, except for the sites around cement factory in flat HH region. In mountainous SW region, however, deposition rates varied widely with sites nearby towns relatively higher and remote regions much lower. Higher correlation coefficients were observed between Cr, As, Pb, and Ni deposition rates, suggesting that they had similar sources. Samples from the SW and SE regions exhibited higher 207Pb/206Pb and 208Pb/206Pb ratios than those from the HH and Up-mid YR regions. Airborne Pb in SW agro-ecosystems were mainly derived from vehicle exhaust and local smelting, whereas that in the HH region from burning of northern Chinese coal.

Journal

Environmental Science and Pollution ResearchSpringer Journals

Published: Dec 12, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off