AtCYT-INV1, a neutral invertase, is involved in osmotic stress-induced inhibition on lateral root growth in Arabidopsis

AtCYT-INV1, a neutral invertase, is involved in osmotic stress-induced inhibition on lateral root... Neutral/Alkaline invertases are unique to plant and photosynthetic bacteria. The function of Neutral/Alkaline invertases in plant development is not clear so far. In this study, we isolated an Arabidopsis (Col-0) mutant insensitive to osmotic stress-induced inhibition on lateral root growth. Map-based cloning reveals that a neutral invertase gene (AtCYT-INV1) was point-mutated. The mutant Atcyt-inv1 showed short primary root, smaller size of leaves and siliques, and promotion of the reproductive compared to the wild type (WT). Carbohydrate measurement showed that sucrose is accumulated and glucose is reduced in the mutant Atcyt-inv1 under normal and 3% mannitol treatments. Taken together, AtCYT-INV1 plays multiple roles in plant development and is involved in osmotic stress-induced inhibition on lateral root growth by controlling the concentration of hexose in cells. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

AtCYT-INV1, a neutral invertase, is involved in osmotic stress-induced inhibition on lateral root growth in Arabidopsis

Loading next page...
 
/lp/springer_journal/atcyt-inv1-a-neutral-invertase-is-involved-in-osmotic-stress-induced-DD22jLCT50
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2007 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-007-9177-4
Publisher site
See Article on Publisher Site

Abstract

Neutral/Alkaline invertases are unique to plant and photosynthetic bacteria. The function of Neutral/Alkaline invertases in plant development is not clear so far. In this study, we isolated an Arabidopsis (Col-0) mutant insensitive to osmotic stress-induced inhibition on lateral root growth. Map-based cloning reveals that a neutral invertase gene (AtCYT-INV1) was point-mutated. The mutant Atcyt-inv1 showed short primary root, smaller size of leaves and siliques, and promotion of the reproductive compared to the wild type (WT). Carbohydrate measurement showed that sucrose is accumulated and glucose is reduced in the mutant Atcyt-inv1 under normal and 3% mannitol treatments. Taken together, AtCYT-INV1 plays multiple roles in plant development and is involved in osmotic stress-induced inhibition on lateral root growth by controlling the concentration of hexose in cells.

Journal

Plant Molecular BiologySpringer Journals

Published: May 17, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off