Asynchronous block-iterative primal-dual decomposition methods for monotone inclusions

Asynchronous block-iterative primal-dual decomposition methods for monotone inclusions We propose new primal-dual decomposition algorithms for solving systems of inclusions involving sums of linearly composed maximally monotone operators. The principal innovation in these algorithms is that they are block-iterative in the sense that, at each iteration, only a subset of the monotone operators needs to be processed, as opposed to all operators as in established methods. Flexible strategies are used to select the blocks of operators activated at each iteration. In addition, we allow lags in operator processing, permitting asynchronous implementation. The decomposition phase of each iteration of our methods is to generate points in the graphs of the selected monotone operators, in order to construct a half-space containing the Kuhn–Tucker set associated with the system. The coordination phase of each iteration involves a projection onto this half-space. We present two related methods: the first method provides weakly convergent primal and dual sequences under general conditions, while the second is a variant in which strong convergence is guaranteed without additional assumptions. Neither algorithm requires prior knowledge of bounds on the linear operators involved or the inversion of linear operators. Our algorithmic framework unifies and significantly extends the approaches taken in earlier work on primal-dual projective splitting methods. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mathematical Programming Springer Journals

Asynchronous block-iterative primal-dual decomposition methods for monotone inclusions

Loading next page...
 
/lp/springer_journal/asynchronous-block-iterative-primal-dual-decomposition-methods-for-ko6eN2AnUy
Publisher
Springer Journals
Copyright
Copyright © 2016 by Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society
Subject
Mathematics; Calculus of Variations and Optimal Control; Optimization; Mathematics of Computing; Numerical Analysis; Combinatorics; Theoretical, Mathematical and Computational Physics; Mathematical Methods in Physics
ISSN
0025-5610
eISSN
1436-4646
D.O.I.
10.1007/s10107-016-1044-0
Publisher site
See Article on Publisher Site

Abstract

We propose new primal-dual decomposition algorithms for solving systems of inclusions involving sums of linearly composed maximally monotone operators. The principal innovation in these algorithms is that they are block-iterative in the sense that, at each iteration, only a subset of the monotone operators needs to be processed, as opposed to all operators as in established methods. Flexible strategies are used to select the blocks of operators activated at each iteration. In addition, we allow lags in operator processing, permitting asynchronous implementation. The decomposition phase of each iteration of our methods is to generate points in the graphs of the selected monotone operators, in order to construct a half-space containing the Kuhn–Tucker set associated with the system. The coordination phase of each iteration involves a projection onto this half-space. We present two related methods: the first method provides weakly convergent primal and dual sequences under general conditions, while the second is a variant in which strong convergence is guaranteed without additional assumptions. Neither algorithm requires prior knowledge of bounds on the linear operators involved or the inversion of linear operators. Our algorithmic framework unifies and significantly extends the approaches taken in earlier work on primal-dual projective splitting methods.

Journal

Mathematical ProgrammingSpringer Journals

Published: Jul 5, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off