# Asymptotic velocity of a position-dependent quantum walk

Asymptotic velocity of a position-dependent quantum walk We consider a position-dependent coined quantum walk on $$\mathbb {Z}$$ Z and assume that the coin operator C(x) satisfies \begin{aligned} \Vert C(x) - C_0 \Vert \le c_1|x|^{-1-\epsilon }, \quad x \in \mathbb {Z}\setminus \{0\} \end{aligned} ‖ C ( x ) - C 0 ‖ ≤ c 1 | x | - 1 - ϵ , x ∈ Z \ { 0 } with positive $$c_1$$ c 1 and $$\epsilon$$ ϵ and $$C_0 \in U(2)$$ C 0 ∈ U ( 2 ) . We show that the Heisenberg operator $$\hat{x}(t)$$ x ^ ( t ) of the position operator converges to the asymptotic velocity operator $$\hat{v}_+$$ v ^ + so that \begin{aligned} \text{ s- }\lim _{t \rightarrow \infty } \mathrm{exp}\left( i \xi \frac{\hat{x}(t)}{t} \right) = \Pi _\mathrm{p}(U) + \mathrm{exp}(i \xi \hat{v}_+) \Pi _\mathrm{ac}(U) \end{aligned} s- lim t → ∞ exp i ξ x ^ ( t ) t = Π p ( U ) + exp ( i ξ v ^ + ) Π ac ( U ) provided that U has no singular continuous spectrum. Here $$\Pi _\mathrm{p}(U)$$ Π p ( U ) (resp., $$\Pi _\mathrm{ac}(U)$$ Π ac ( U ) ) is the orthogonal projection onto the direct sum of all eigenspaces (resp., the subspace of absolute continuity) of U. We also prove that for the random variable $$X_t$$ X t denoting the position of a quantum walker at time $$t \in \mathbb {N}$$ t ∈ N , $$X_t/t$$ X t / t converges in law to a random variable V with the probability distribution \begin{aligned} \mu _V = \Vert \Pi _\mathrm{p}(U)\Psi _0\Vert ^2\delta _0 + \Vert E_{\hat{v}_+}(\cdot ) \Pi _\mathrm{ac}(U)\Psi _0\Vert ^2, \end{aligned} μ V = ‖ Π p ( U ) Ψ 0 ‖ 2 δ 0 + ‖ E v ^ + ( · ) Π ac ( U ) Ψ 0 ‖ 2 , where $$\Psi _0$$ Ψ 0 is the initial state, $$\delta _0$$ δ 0 the Dirac measure at zero, and $$E_{\hat{v}_+}$$ E v ^ + the spectral measure of $$\hat{v}_+$$ v ^ + . http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

# Asymptotic velocity of a position-dependent quantum walk

Quantum Information Processing, Volume 15 (1) – Nov 13, 2015
17 pages

/lp/springer_journal/asymptotic-velocity-of-a-position-dependent-quantum-walk-VB0ovZJq5O
Publisher
Springer Journals
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-015-1183-x
Publisher site
See Article on Publisher Site

### Abstract

We consider a position-dependent coined quantum walk on $$\mathbb {Z}$$ Z and assume that the coin operator C(x) satisfies \begin{aligned} \Vert C(x) - C_0 \Vert \le c_1|x|^{-1-\epsilon }, \quad x \in \mathbb {Z}\setminus \{0\} \end{aligned} ‖ C ( x ) - C 0 ‖ ≤ c 1 | x | - 1 - ϵ , x ∈ Z \ { 0 } with positive $$c_1$$ c 1 and $$\epsilon$$ ϵ and $$C_0 \in U(2)$$ C 0 ∈ U ( 2 ) . We show that the Heisenberg operator $$\hat{x}(t)$$ x ^ ( t ) of the position operator converges to the asymptotic velocity operator $$\hat{v}_+$$ v ^ + so that \begin{aligned} \text{ s- }\lim _{t \rightarrow \infty } \mathrm{exp}\left( i \xi \frac{\hat{x}(t)}{t} \right) = \Pi _\mathrm{p}(U) + \mathrm{exp}(i \xi \hat{v}_+) \Pi _\mathrm{ac}(U) \end{aligned} s- lim t → ∞ exp i ξ x ^ ( t ) t = Π p ( U ) + exp ( i ξ v ^ + ) Π ac ( U ) provided that U has no singular continuous spectrum. Here $$\Pi _\mathrm{p}(U)$$ Π p ( U ) (resp., $$\Pi _\mathrm{ac}(U)$$ Π ac ( U ) ) is the orthogonal projection onto the direct sum of all eigenspaces (resp., the subspace of absolute continuity) of U. We also prove that for the random variable $$X_t$$ X t denoting the position of a quantum walker at time $$t \in \mathbb {N}$$ t ∈ N , $$X_t/t$$ X t / t converges in law to a random variable V with the probability distribution \begin{aligned} \mu _V = \Vert \Pi _\mathrm{p}(U)\Psi _0\Vert ^2\delta _0 + \Vert E_{\hat{v}_+}(\cdot ) \Pi _\mathrm{ac}(U)\Psi _0\Vert ^2, \end{aligned} μ V = ‖ Π p ( U ) Ψ 0 ‖ 2 δ 0 + ‖ E v ^ + ( · ) Π ac ( U ) Ψ 0 ‖ 2 , where $$\Psi _0$$ Ψ 0 is the initial state, $$\delta _0$$ δ 0 the Dirac measure at zero, and $$E_{\hat{v}_+}$$ E v ^ + the spectral measure of $$\hat{v}_+$$ v ^ + .

### Journal

Quantum Information ProcessingSpringer Journals

Published: Nov 13, 2015

### References

• Quantum random walks in one dimension
Konno, N
• Localization of an inhomogeneous discrete-time quantum walk on the line
Konno, N

## You’re reading a free preview. Subscribe to read the entire article.

### DeepDyve is your personal research library

It’s your single place to instantly
that matters to you.

over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month ### Explore the DeepDyve Library ### Search Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly ### Organize Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place. ### Access Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals. ### Your journals are on DeepDyve Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more. All the latest content is available, no embargo periods. DeepDyve ### Freelancer DeepDyve ### Pro Price FREE$49/month
\$360/year

Save searches from
PubMed

Create lists to

Export lists, citations