Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Asymptotic results for solutions of a weighted p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfon ...

Asymptotic results for solutions of a weighted p\documentclass[12pt]{minimal}... The purpose of this paper is to investigate the time behavior of the solution of a weighted p-Laplacian evolution equation, given by 0.1ut=divγ|∇u|p-2∇uon(0,∞)×S,γ|∇u|p-2∇u·η=0on(0,∞)×∂S,u(0,·)=u0onS,\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\begin{aligned} {\left\{ \begin{array}{ll} u_{t} = \text {div} \left( \gamma |\nabla u|^{p-2}\nabla u \right) &{} \text {on } (0,\infty )\times S, \\ \gamma |\nabla u|^{p-2}\nabla u\cdot \eta =0 &{} \text {on } (0,\infty )\times \partial S, \\ u(0,\cdot )=u_{0} &{} \text {on } S,\end{array}\right. } \end{aligned}$$\end{document}where n∈N\{1}\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$n \in \mathbb {N}{\setminus } \{1\}$$\end{document}, p∈(1,∞)\{2}\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$p \in (1,\infty ){\setminus } \{2\}$$\end{document}, S⊆Rn\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$S\subseteq \mathbb {R}^{n}$$\end{document} is an open, bounded and connected set of class C1\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$C^{1}$$\end{document}, η\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\eta $$\end{document} is the unit outer normal on ∂S\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\partial S$$\end{document}, and γ:S→(0,∞)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\gamma :S\rightarrow (0,\infty )$$\end{document} is a bounded function which can be extended to an Ap\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$A_{p}$$\end{document}-Muckenhoupt weight on Rn\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mathbb {R}^{n}$$\end{document}. It will be proven that the solution of (0.1) converges in L1(S)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$L^{1}(S)$$\end{document} to the average of the initial value u0∈L1(S)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$u_{0} \in L^{1}(S)$$\end{document}. Moreover, a conservation of mass principle, an extinction principle and a decay rate for the solution will be derived. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Nonlinear Differential Equations and Applications NoDEA Springer Journals

Asymptotic results for solutions of a weighted p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfon ...

Loading next page...
 
/lp/springer_journal/asymptotic-results-for-solutions-of-a-weighted-varvec-p-p-laplacian-20vIxeSX1h

References (15)

Publisher
Springer Journals
Copyright
Copyright © Springer International Publishing AG 2017
Subject
Mathematics; Analysis
ISSN
1021-9722
eISSN
1420-9004
DOI
10.1007/s00030-017-0468-4
Publisher site
See Article on Publisher Site

Abstract

The purpose of this paper is to investigate the time behavior of the solution of a weighted p-Laplacian evolution equation, given by 0.1ut=divγ|∇u|p-2∇uon(0,∞)×S,γ|∇u|p-2∇u·η=0on(0,∞)×∂S,u(0,·)=u0onS,\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\begin{aligned} {\left\{ \begin{array}{ll} u_{t} = \text {div} \left( \gamma |\nabla u|^{p-2}\nabla u \right) &{} \text {on } (0,\infty )\times S, \\ \gamma |\nabla u|^{p-2}\nabla u\cdot \eta =0 &{} \text {on } (0,\infty )\times \partial S, \\ u(0,\cdot )=u_{0} &{} \text {on } S,\end{array}\right. } \end{aligned}$$\end{document}where n∈N\{1}\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$n \in \mathbb {N}{\setminus } \{1\}$$\end{document}, p∈(1,∞)\{2}\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$p \in (1,\infty ){\setminus } \{2\}$$\end{document}, S⊆Rn\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$S\subseteq \mathbb {R}^{n}$$\end{document} is an open, bounded and connected set of class C1\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$C^{1}$$\end{document}, η\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\eta $$\end{document} is the unit outer normal on ∂S\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\partial S$$\end{document}, and γ:S→(0,∞)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\gamma :S\rightarrow (0,\infty )$$\end{document} is a bounded function which can be extended to an Ap\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$A_{p}$$\end{document}-Muckenhoupt weight on Rn\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mathbb {R}^{n}$$\end{document}. It will be proven that the solution of (0.1) converges in L1(S)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$L^{1}(S)$$\end{document} to the average of the initial value u0∈L1(S)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$u_{0} \in L^{1}(S)$$\end{document}. Moreover, a conservation of mass principle, an extinction principle and a decay rate for the solution will be derived.

Journal

Nonlinear Differential Equations and Applications NoDEASpringer Journals

Published: Aug 1, 2017

Keywords: Weighted p-Laplacian evolution equation; Asymptotic results for nonlinear semigroups; Nonlocal diffusion; Neumann boundary conditions; Primary 35B40; Secondary 47H20

There are no references for this article.