Asymptotic inference for maximum likelihood estimators under the special exponential family with double-truncation

Asymptotic inference for maximum likelihood estimators under the special exponential family with... Biased sampling affects the inference for population parameters of interest if the sampling mechanism is not appropriately handled. This paper considers doubly-truncated data arising in lifetime data analysis in which samples are subject to both left- and right-truncations. To correct for the sampling bias with doubly-truncated data, maximum likelihood estimator (MLE) has been proposed under a parametric family called the special exponential family (Efron and Petrosian, in J Am Stat Assoc 94:824–834, 1999). However, there is still a lack of justifying the fundamental properties for the MLE, including consistency and asymptotic normality. In this paper, we point out that the classical asymptotic theory for the independent and identically distributed data is not suitable for studying the MLE under double-truncation due to the non-identical truncation intervals. Alternatively, we formalize the asymptotic results under independent but not identically distributed data that suitably takes into account for the between-sample heterogeneity of truncation intervals. We establish the consistency and asymptotic normality of the MLE under a reasonably simple set of regularity conditions. Then, we give asymptotically valid techniques to estimate standard errors and to construct confidence intervals. Simulations are conducted to verify the suggested techniques, and childhood cancer data are used for illustration. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Statistical Papers Springer Journals

Asymptotic inference for maximum likelihood estimators under the special exponential family with double-truncation

Loading next page...
 
/lp/springer_journal/asymptotic-inference-for-maximum-likelihood-estimators-under-the-9k80aM0gbd
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2015 by Springer-Verlag Berlin Heidelberg
Subject
Statistics; Statistics for Business/Economics/Mathematical Finance/Insurance; Probability Theory and Stochastic Processes; Economic Theory/Quantitative Economics/Mathematical Methods; Operations Research/Decision Theory
ISSN
0932-5026
eISSN
1613-9798
D.O.I.
10.1007/s00362-015-0730-y
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial