ASYMMETRIC LEAVES2-LIKE1gene, a member of the AS2/LOB family, controls proximal–distal patterning in Arabidopsis petals

ASYMMETRIC LEAVES2-LIKE1gene, a member of the AS2/LOB family, controls proximal–distal... The formation and the development of the floral organs require an intercalate expression of organ-specific genes. At the same time, meristem-specific genes are repressed to complete the differentiation of the organs in the floral whorls. In an Arabidopsis activation tagging population, a mutant affected in inflorescence architecture was identified. This gain-of-function mutant, designateddownwards siliques1 (dsl1-D), has shorter internodes and the lateral organs such as flowers are bending downwards, similar to the loss-of-function brevipedicellus (bp) mutant. The affected gene in dsl1-D appeared to be ASYMMETRIC LEAVES2-LIKE1 (ASL1)/LATERAL ORGAN BOUNDARIESdomain gene 36 (LBD36), which is a member of the ASYMMETRIC LEAVES2 (AS2)/LATERAL ORGAN BOUNDARIES (LOB) domain gene family. Analysis of the loss-of-function mutant asl1/lbd36 did not show morphological aberration. Double mutant analysis of asl1/lbd36 together with as2, the ASL1/LBD36 closest homologue, demonstrates that these two members of the AS2/LOB family act partially redundant to control cell fate determination in Arabidopsis petals. Moreover, molecular analysis revealed that overexpression of ASL1/LBD36 leads to repression of the homeobox gene BP, which supports the model that an antagonistic relationship between ASL/LBD and homeobox members is required for the differentiation of lateral organs. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

ASYMMETRIC LEAVES2-LIKE1gene, a member of the AS2/LOB family, controls proximal–distal patterning in Arabidopsis petals

Loading next page...
1
 
/lp/springer_journal/asymmetric-leaves2-like1gene-a-member-of-the-as2-lob-family-controls-XQd7XSKNzg
Publisher
Springer Journals
Copyright
Copyright © 2005 by Springer
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-005-0698-4
Publisher site
See Article on Publisher Site

Abstract

The formation and the development of the floral organs require an intercalate expression of organ-specific genes. At the same time, meristem-specific genes are repressed to complete the differentiation of the organs in the floral whorls. In an Arabidopsis activation tagging population, a mutant affected in inflorescence architecture was identified. This gain-of-function mutant, designateddownwards siliques1 (dsl1-D), has shorter internodes and the lateral organs such as flowers are bending downwards, similar to the loss-of-function brevipedicellus (bp) mutant. The affected gene in dsl1-D appeared to be ASYMMETRIC LEAVES2-LIKE1 (ASL1)/LATERAL ORGAN BOUNDARIESdomain gene 36 (LBD36), which is a member of the ASYMMETRIC LEAVES2 (AS2)/LATERAL ORGAN BOUNDARIES (LOB) domain gene family. Analysis of the loss-of-function mutant asl1/lbd36 did not show morphological aberration. Double mutant analysis of asl1/lbd36 together with as2, the ASL1/LBD36 closest homologue, demonstrates that these two members of the AS2/LOB family act partially redundant to control cell fate determination in Arabidopsis petals. Moreover, molecular analysis revealed that overexpression of ASL1/LBD36 leads to repression of the homeobox gene BP, which supports the model that an antagonistic relationship between ASL/LBD and homeobox members is required for the differentiation of lateral organs.

Journal

Plant Molecular BiologySpringer Journals

Published: Jan 15, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off