Asymmetric cell division in the morphogenesis of Drosophila melanogaster macrochaetae

Asymmetric cell division in the morphogenesis of Drosophila melanogaster macrochaetae Asymmetric cell division (ACD) is the basic process which creates diversity in the cells of multi-cellular organisms. As a result of asymmetric cell division, daughter cells acquire the ability to differentiate and specialize in a given direction, which is different from that of their parent cells and from each other. This type of division is observed in a wide range of living organisms from bacteria to vertebrates. It has been shown that the molecular-genetic control mechanism of ACD is evolutionally conservative. The proteins involved in the process of ACD in different kinds of animals have a high degree of homology. Sensory organs—bristles (macrochaetae)—of Drosophila are widely used as a model system for studying the genetic control mechanisms of asymmetric division. Bristles located in an orderly manner on the head and body of the fly play the role of mechanoreceptors. Each of them consists of four specialized cells—offspring of the only sensory organ precursor cell (SOP), which differentiates from the wing imaginal disc at the larval stage of the late third age. The basic differentiation and further specialization of the daughter cells of SOP is an asymmetric division process. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Developmental Biology Springer Journals

Asymmetric cell division in the morphogenesis of Drosophila melanogaster macrochaetae

Loading next page...
 
/lp/springer_journal/asymmetric-cell-division-in-the-morphogenesis-of-drosophila-9xeZwwpTms
Publisher
SP MAIK Nauka/Interperiodica
Copyright
Copyright © 2011 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Developmental Biology; Animal Anatomy / Morphology / Histology
ISSN
1062-3604
eISSN
1608-3326
D.O.I.
10.1134/S1062360411010036
Publisher site
See Article on Publisher Site

Abstract

Asymmetric cell division (ACD) is the basic process which creates diversity in the cells of multi-cellular organisms. As a result of asymmetric cell division, daughter cells acquire the ability to differentiate and specialize in a given direction, which is different from that of their parent cells and from each other. This type of division is observed in a wide range of living organisms from bacteria to vertebrates. It has been shown that the molecular-genetic control mechanism of ACD is evolutionally conservative. The proteins involved in the process of ACD in different kinds of animals have a high degree of homology. Sensory organs—bristles (macrochaetae)—of Drosophila are widely used as a model system for studying the genetic control mechanisms of asymmetric division. Bristles located in an orderly manner on the head and body of the fly play the role of mechanoreceptors. Each of them consists of four specialized cells—offspring of the only sensory organ precursor cell (SOP), which differentiates from the wing imaginal disc at the larval stage of the late third age. The basic differentiation and further specialization of the daughter cells of SOP is an asymmetric division process.

Journal

Russian Journal of Developmental BiologySpringer Journals

Published: Apr 7, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off