Asymmetric and selective object rendering for optimized Cloud Mobile 3D Display Gaming user experience

Asymmetric and selective object rendering for optimized Cloud Mobile 3D Display Gaming user... Cloud Mobile 3D Display Gaming has been recently proposed where 3D video rendering and encoding are performed on cloud servers, with the resulting 3D video streamed wirelessly to mobile devices with 3D displays. This approach has the advantage of relieving high computation, power and storage requirements of 3D display gaming from mobile devices, while enabling game developers to focus on a single rich version of the game which can be experienced from any mobile device and platform. However, it is challenging to stream 3D video over dynamically fluctuating and often constrained mobile networks. In this paper, we propose a novel technique called Asymmetric and Selective Object Rendering (ASOR) which proves to be more powerful than previous solutions for Cloud based Mobile 3D display gaming. Specifically, this technique will enable rendering engine to intelligently decide whether or not to render an individual object and how good the corresponding texture detail will be if rendered, and the settings can be asymmetric for two views. Thus, unimportant objects can trade quality for reduced bitrate while important objects can remain high quality so that the overall user experience is optimized given certain bandwidth constraints. To quantitatively measure the user experience and bitrate by applying different rendering settings, we develop a user experience model and a bitrate model. We further propose an optimization algorithm which uses the above two models to automatically decide the optimal rendering settings for left view and right view to ensure the best user experience given the network conditions. Experiments conducted using real 4G-LTE network profiles on commercial cloud service with different genres of games demonstrate significant improvement in user experience when the proposed optimization algorithm is applied. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Multimedia Tools and Applications Springer Journals

Asymmetric and selective object rendering for optimized Cloud Mobile 3D Display Gaming user experience

Loading next page...
 
/lp/springer_journal/asymmetric-and-selective-object-rendering-for-optimized-cloud-mobile-bDm5GSC2Uy
Publisher
Springer US
Copyright
Copyright © 2016 by Springer Science+Business Media New York
Subject
Computer Science; Multimedia Information Systems; Computer Communication Networks; Data Structures, Cryptology and Information Theory; Special Purpose and Application-Based Systems
ISSN
1380-7501
eISSN
1573-7721
D.O.I.
10.1007/s11042-016-3798-z
Publisher site
See Article on Publisher Site

Abstract

Cloud Mobile 3D Display Gaming has been recently proposed where 3D video rendering and encoding are performed on cloud servers, with the resulting 3D video streamed wirelessly to mobile devices with 3D displays. This approach has the advantage of relieving high computation, power and storage requirements of 3D display gaming from mobile devices, while enabling game developers to focus on a single rich version of the game which can be experienced from any mobile device and platform. However, it is challenging to stream 3D video over dynamically fluctuating and often constrained mobile networks. In this paper, we propose a novel technique called Asymmetric and Selective Object Rendering (ASOR) which proves to be more powerful than previous solutions for Cloud based Mobile 3D display gaming. Specifically, this technique will enable rendering engine to intelligently decide whether or not to render an individual object and how good the corresponding texture detail will be if rendered, and the settings can be asymmetric for two views. Thus, unimportant objects can trade quality for reduced bitrate while important objects can remain high quality so that the overall user experience is optimized given certain bandwidth constraints. To quantitatively measure the user experience and bitrate by applying different rendering settings, we develop a user experience model and a bitrate model. We further propose an optimization algorithm which uses the above two models to automatically decide the optimal rendering settings for left view and right view to ensure the best user experience given the network conditions. Experiments conducted using real 4G-LTE network profiles on commercial cloud service with different genres of games demonstrate significant improvement in user experience when the proposed optimization algorithm is applied.

Journal

Multimedia Tools and ApplicationsSpringer Journals

Published: Aug 18, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off