Astrocytes and the Renin Angiotensin System: Relevance in Disease Pathogenesis

Astrocytes and the Renin Angiotensin System: Relevance in Disease Pathogenesis The presence of a brain renin angiotensin system (RAS) is well documented. An overactive brain RAS contributes to the development and progression of cardiovascular and renal disorders among other conditions. In hypertension, an augmented brain RAS leads to an increase in sympathetic nervous system activity. In addition, impaired baroreceptor reflex function, increased vasopressin activity and neuroinflammation are important contributors as well. The relevance of angiotensins in central and peripheral systems, such as neurons and vascular smooth muscle cells, in cardiovascular disease pathogenesis is fairly understood. However, the role of astrocytes is less well studied. Astrocytes are a major contributor to neuroinflammation by increased synthesis and secretion of inflammatory mediators, dysregulated astrogliosis and impaired astrocyte proliferation. Astrocytes may also contribute to impaired neuromodulation. The precise molecular mechanisms by which astrocytes mediate these effects are still not fully understood. Here, we summarize the role of astrocytes in RAS -mediated pathogenesis of hypertension and other cardiovascular diseases. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Neurochemical Research Springer Journals

Astrocytes and the Renin Angiotensin System: Relevance in Disease Pathogenesis

Loading next page...
 
/lp/springer_journal/astrocytes-and-the-renin-angiotensin-system-relevance-in-disease-LSCQnOX0v4
Publisher
Springer US
Copyright
Copyright © 2018 by Springer Science+Business Media, LLC, part of Springer Nature
Subject
Biomedicine; Neurosciences; Neurochemistry; Biochemistry, general; Cell Biology; Neurology
ISSN
0364-3190
eISSN
1573-6903
D.O.I.
10.1007/s11064-018-2557-0
Publisher site
See Article on Publisher Site

Abstract

The presence of a brain renin angiotensin system (RAS) is well documented. An overactive brain RAS contributes to the development and progression of cardiovascular and renal disorders among other conditions. In hypertension, an augmented brain RAS leads to an increase in sympathetic nervous system activity. In addition, impaired baroreceptor reflex function, increased vasopressin activity and neuroinflammation are important contributors as well. The relevance of angiotensins in central and peripheral systems, such as neurons and vascular smooth muscle cells, in cardiovascular disease pathogenesis is fairly understood. However, the role of astrocytes is less well studied. Astrocytes are a major contributor to neuroinflammation by increased synthesis and secretion of inflammatory mediators, dysregulated astrogliosis and impaired astrocyte proliferation. Astrocytes may also contribute to impaired neuromodulation. The precise molecular mechanisms by which astrocytes mediate these effects are still not fully understood. Here, we summarize the role of astrocytes in RAS -mediated pathogenesis of hypertension and other cardiovascular diseases.

Journal

Neurochemical ResearchSpringer Journals

Published: Jun 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off