Assessment of the adaptation capabilities of the bivalves Modiolus modiolus (Linnaeus, 1758) and Crenomytilus grayanus (Dunker, 1853) under increased levels of heavy metals in the environment

Assessment of the adaptation capabilities of the bivalves Modiolus modiolus (Linnaeus, 1758) and... The active biomonitoring method was used to examine the changes in heavy-metal (Fe, Zn, Cu, Cd, Mn, Pb, and Ni) contents in the organs (muscle, gonads, mantle, gills, digestive gland, and kidney) of the mussels Crenomytilus grayanus and Modiolus modiolus. The dynamics of trace element concentrations in mussel organs during the experiment were compared with their subcellular distribution. The defense strategy of M. modiolus consisted of the threshold accumulation of toxic metals in all organs followed by their excretion, whereas the strategy of C. grayanus involved short-term isolation from adverse environmental influence. Under chronic pollution, in C. grayanus the main loads occurred in the digestive gland and kidney. Under acute changes in environmental conditions, the processes of regulation (detoxification/excretion) of Fe, Mn, and Pb in this species were impaired substantially. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Marine Biology Springer Journals

Assessment of the adaptation capabilities of the bivalves Modiolus modiolus (Linnaeus, 1758) and Crenomytilus grayanus (Dunker, 1853) under increased levels of heavy metals in the environment

Loading next page...
 
/lp/springer_journal/assessment-of-the-adaptation-capabilities-of-the-bivalves-modiolus-Xpaa5ubN9W
Publisher
SP MAIK Nauka/Interperiodica
Copyright
Copyright © 2012 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Freshwater & Marine Ecology
ISSN
1063-0740
eISSN
1608-3377
D.O.I.
10.1134/S1063074012020101
Publisher site
See Article on Publisher Site

Abstract

The active biomonitoring method was used to examine the changes in heavy-metal (Fe, Zn, Cu, Cd, Mn, Pb, and Ni) contents in the organs (muscle, gonads, mantle, gills, digestive gland, and kidney) of the mussels Crenomytilus grayanus and Modiolus modiolus. The dynamics of trace element concentrations in mussel organs during the experiment were compared with their subcellular distribution. The defense strategy of M. modiolus consisted of the threshold accumulation of toxic metals in all organs followed by their excretion, whereas the strategy of C. grayanus involved short-term isolation from adverse environmental influence. Under chronic pollution, in C. grayanus the main loads occurred in the digestive gland and kidney. Under acute changes in environmental conditions, the processes of regulation (detoxification/excretion) of Fe, Mn, and Pb in this species were impaired substantially.

Journal

Russian Journal of Marine BiologySpringer Journals

Published: May 22, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off