Assessment of quantitative imaging of contaminant distributions in porous media

Assessment of quantitative imaging of contaminant distributions in porous media In this article an experimental setup designed to assist in the characterization of complex solute transport problems in porous media is described. Glass beads representing the medium are confined in a 2-D transparent Perspex box and a water flow transports a fluorescent dye. Under suitable illumination, the dye emits visible light which is collected by a CCD camera. The image acquired by this non-invasive optical technique is processed to estimate the 2-dimensional distribution of tracer concentrations by using an appropriate calibration curve that links fluorescent intensity and solute concentration. Details about the dye choice and discussion about photobleaching are reported. An analysis of the experimental error on the concentration profile is also presented. A few recent results of a study on contaminant plume within a homogenous porous matrix constituted by glass beads having mean diameter of 1 mm or 2 mm shows the performance of constructed model. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Assessment of quantitative imaging of contaminant distributions in porous media

Loading next page...
 
/lp/springer_journal/assessment-of-quantitative-imaging-of-contaminant-distributions-in-02zxoHzVsd
Publisher
Springer-Verlag
Copyright
Copyright © 2007 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-007-0388-x
Publisher site
See Article on Publisher Site

Abstract

In this article an experimental setup designed to assist in the characterization of complex solute transport problems in porous media is described. Glass beads representing the medium are confined in a 2-D transparent Perspex box and a water flow transports a fluorescent dye. Under suitable illumination, the dye emits visible light which is collected by a CCD camera. The image acquired by this non-invasive optical technique is processed to estimate the 2-dimensional distribution of tracer concentrations by using an appropriate calibration curve that links fluorescent intensity and solute concentration. Details about the dye choice and discussion about photobleaching are reported. An analysis of the experimental error on the concentration profile is also presented. A few recent results of a study on contaminant plume within a homogenous porous matrix constituted by glass beads having mean diameter of 1 mm or 2 mm shows the performance of constructed model.

Journal

Experiments in FluidsSpringer Journals

Published: Sep 11, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off