Assessment of mechanical stability of rapidly separating microneedles for transdermal drug delivery

Assessment of mechanical stability of rapidly separating microneedles for transdermal drug delivery The rapidly separating microneedles (RS-PP-MNs), composed of PVA (separable arrow head) MNs and a poly(L-lactide-co-D, L-lactide) (PLA) supporting array, are used for transdermal delivery system at high humidity. The fabricated RS-PP-MNs should have sufficient mechanical strength at different humidity. In general, the water adsorption rate was increased with increasing humidity; by contrast, storage time was decreased with increasing humidity. The higher water adsorption rate indicated the lower mechanical strength, thereby lowering drug delivery efficiency. The prepared RS-PP-MNs could be successfully inserted within the skin at high humid atmosphere due to PLA supporting array. The bright field and fluorescence microscopic images suggested the probable real-time applicability of RS-PP-MNs. The in vitro and in vivo assay suggested that RS-PP-MNs potentially were able to deliver the drugs at high humidity condition. The significant improvement in the drug delivery efficiency and skin penetration ability was observed compared with the traditional MNs. In addition, the fabrication of RS-PP-MNs is facile and scalable. Therefore, the prepared RS-PP-MNs with supporting solid PLA array might be advantageous in real-time applications. This study is of great importance for the MN field as it offers more theoretical support for clinical applications. . . . . Keywords Microneedle Drug delivery http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Drug Delivery and Translational Research Springer Journals

Assessment of mechanical stability of rapidly separating microneedles for transdermal drug delivery

Loading next page...
 
/lp/springer_journal/assessment-of-mechanical-stability-of-rapidly-separating-microneedles-eHhHdadSfZ
Publisher
Springer US
Copyright
Copyright © 2018 by Controlled Release Society
Subject
Biomedicine; Pharmaceutical Sciences/Technology
ISSN
2190-393X
eISSN
2190-3948
D.O.I.
10.1007/s13346-018-0547-z
Publisher site
See Article on Publisher Site

Abstract

The rapidly separating microneedles (RS-PP-MNs), composed of PVA (separable arrow head) MNs and a poly(L-lactide-co-D, L-lactide) (PLA) supporting array, are used for transdermal delivery system at high humidity. The fabricated RS-PP-MNs should have sufficient mechanical strength at different humidity. In general, the water adsorption rate was increased with increasing humidity; by contrast, storage time was decreased with increasing humidity. The higher water adsorption rate indicated the lower mechanical strength, thereby lowering drug delivery efficiency. The prepared RS-PP-MNs could be successfully inserted within the skin at high humid atmosphere due to PLA supporting array. The bright field and fluorescence microscopic images suggested the probable real-time applicability of RS-PP-MNs. The in vitro and in vivo assay suggested that RS-PP-MNs potentially were able to deliver the drugs at high humidity condition. The significant improvement in the drug delivery efficiency and skin penetration ability was observed compared with the traditional MNs. In addition, the fabrication of RS-PP-MNs is facile and scalable. Therefore, the prepared RS-PP-MNs with supporting solid PLA array might be advantageous in real-time applications. This study is of great importance for the MN field as it offers more theoretical support for clinical applications. . . . . Keywords Microneedle Drug delivery

Journal

Drug Delivery and Translational ResearchSpringer Journals

Published: May 29, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off