Assessment of meaningful change in routine outcome measurement (ROM) with a combination of a longitudinal and a ‘classify and count’ approach

Assessment of meaningful change in routine outcome measurement (ROM) with a combination of a... To assess significant changes of health status in people receiving health care, distribution-based and anchor-based methods have been proposed. However, there is no real consensus on what method is the best for evaluating clinically meaningful change. To maximize the internal and external validity of outcome assessment, we propose combining two approaches as recommended by recent practical guidelines on this field. Specifically, we suggest applying longitudinal hierarchical linear models on subgroups of patients showing reliable change and reliable and clinically significant change. This combined approach improved the model’s ability (1) to quantify the magnitude of changes to be reliable and clinically meaningful and (2) to select significant predictors of changes. An empirical application on a prevalence sample of Italian outpatients attending four community mental health services was done. A cross-sectional model and three longitudinal models were applied on the entire study sample and reliable and clinically meaningful change subsamples to investigate the magnitude of change and the predictive effect on outcomes of clinical, socio-demographic and process variables on different patients’ subgroups. Differences were found suggesting that both the statistical method and the sample used to calculate individual changes affect the estimates. The main conclusion is that ignoring the longitudinal data structure or including patients with unreliable change at the follow-up might result in misleading inferences that can alter the real magnitude of changes and the contributions of predictors. The approach proposed provides robust feedback to clinicians on clinically significant change and can be recommended in outcome studies and research. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quality & Quantity Springer Journals

Assessment of meaningful change in routine outcome measurement (ROM) with a combination of a longitudinal and a ‘classify and count’ approach

Loading next page...
 
/lp/springer_journal/assessment-of-meaningful-change-in-routine-outcome-measurement-rom-qHpQL3k8K0
Publisher
Springer Netherlands
Copyright
Copyright © 2013 by Springer Science+Business Media Dordrecht
Subject
Social Sciences, general; Methodology of the Social Sciences; Social Sciences, general
ISSN
0033-5177
eISSN
1573-7845
D.O.I.
10.1007/s11135-013-9902-9
Publisher site
See Article on Publisher Site

Abstract

To assess significant changes of health status in people receiving health care, distribution-based and anchor-based methods have been proposed. However, there is no real consensus on what method is the best for evaluating clinically meaningful change. To maximize the internal and external validity of outcome assessment, we propose combining two approaches as recommended by recent practical guidelines on this field. Specifically, we suggest applying longitudinal hierarchical linear models on subgroups of patients showing reliable change and reliable and clinically significant change. This combined approach improved the model’s ability (1) to quantify the magnitude of changes to be reliable and clinically meaningful and (2) to select significant predictors of changes. An empirical application on a prevalence sample of Italian outpatients attending four community mental health services was done. A cross-sectional model and three longitudinal models were applied on the entire study sample and reliable and clinically meaningful change subsamples to investigate the magnitude of change and the predictive effect on outcomes of clinical, socio-demographic and process variables on different patients’ subgroups. Differences were found suggesting that both the statistical method and the sample used to calculate individual changes affect the estimates. The main conclusion is that ignoring the longitudinal data structure or including patients with unreliable change at the follow-up might result in misleading inferences that can alter the real magnitude of changes and the contributions of predictors. The approach proposed provides robust feedback to clinicians on clinically significant change and can be recommended in outcome studies and research.

Journal

Quality & QuantitySpringer Journals

Published: Jul 4, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off