Assessment of genetic instabilities induced by tissue culture in alkaligrass

Assessment of genetic instabilities induced by tissue culture in alkaligrass Alkaligrass (Puccinellia chinampoensis Ohwi), one of the important forage grasses in saline-alkalieroded grasslands, has been proved to be invaluable for improving saline-alkali soils. However, little is known of its genetic instabilities during in vitro culture for its artificial breeding. In this paper, a simple and efficient regeneration system of mature seed-induced calli in alkaligrass was established, and the somaclonal variation in the regenerated plants was assessed by inter-simple sequence repeat (ISSR) and retrotransposon-microsatellite amplified polymorphism (REMAP) markers. 18 randomly chosen regenerants were subjected to ISSR and REMAP analysis with the shoot from the same grain of seed as the control. ISSR analysis showed that of the 145 scored bands, 13 were polymorphic among the analyzed samples, giving rise to a genetic variation frequency of 8.97%. REMAP analysis revealed that 4 out of 127 scored bands were polymorphic, a genetic variation frequency of 3.15% occurred. Cluster analysis indicated that the genetic similarity index calculated on the basis of ISSR data or REMAP data among the 18 regenerated plants and the donor plant was 0.974 and 0.996 respectively. All the results confirmed that somaclonal variation was induced by tissue culture in alkaligrass at a higher frequency, and indicated that the regeneration system could be a viable option for genetic improvement of alkaligrass by biotechniques. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Assessment of genetic instabilities induced by tissue culture in alkaligrass

Loading next page...
 
/lp/springer_journal/assessment-of-genetic-instabilities-induced-by-tissue-culture-in-6dtfBzjny1
Publisher
Pleiades Publishing
Copyright
Copyright © 2016 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443716030079
Publisher site
See Article on Publisher Site

Abstract

Alkaligrass (Puccinellia chinampoensis Ohwi), one of the important forage grasses in saline-alkalieroded grasslands, has been proved to be invaluable for improving saline-alkali soils. However, little is known of its genetic instabilities during in vitro culture for its artificial breeding. In this paper, a simple and efficient regeneration system of mature seed-induced calli in alkaligrass was established, and the somaclonal variation in the regenerated plants was assessed by inter-simple sequence repeat (ISSR) and retrotransposon-microsatellite amplified polymorphism (REMAP) markers. 18 randomly chosen regenerants were subjected to ISSR and REMAP analysis with the shoot from the same grain of seed as the control. ISSR analysis showed that of the 145 scored bands, 13 were polymorphic among the analyzed samples, giving rise to a genetic variation frequency of 8.97%. REMAP analysis revealed that 4 out of 127 scored bands were polymorphic, a genetic variation frequency of 3.15% occurred. Cluster analysis indicated that the genetic similarity index calculated on the basis of ISSR data or REMAP data among the 18 regenerated plants and the donor plant was 0.974 and 0.996 respectively. All the results confirmed that somaclonal variation was induced by tissue culture in alkaligrass at a higher frequency, and indicated that the regeneration system could be a viable option for genetic improvement of alkaligrass by biotechniques.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: May 13, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off