Assessment of camera models for use in planar velocimetry calibration

Assessment of camera models for use in planar velocimetry calibration The performance of three implementations of pinhole-based camera models for use in common light-sheet imaging arrangements is investigated on the background of application to particle image velocimetry (PIV) and Doppler global velocimetry (DGV). Calibration data obtained from translated planar calibration targets was found to yield camera attitude within 0.1° on four different test cases with object distance varying as little as 2% depending on the choice of camera model. Camera calibration using data from a single image of coplanar points is considered a viable alternative to manual triangulation of camera positions but is restricted to off-normal viewing directions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Assessment of camera models for use in planar velocimetry calibration

Loading next page...
 
/lp/springer_journal/assessment-of-camera-models-for-use-in-planar-velocimetry-calibration-wZutWIvgMa
Publisher
Springer-Verlag
Copyright
Copyright © 2006 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-006-0165-2
Publisher site
See Article on Publisher Site

Abstract

The performance of three implementations of pinhole-based camera models for use in common light-sheet imaging arrangements is investigated on the background of application to particle image velocimetry (PIV) and Doppler global velocimetry (DGV). Calibration data obtained from translated planar calibration targets was found to yield camera attitude within 0.1° on four different test cases with object distance varying as little as 2% depending on the choice of camera model. Camera calibration using data from a single image of coplanar points is considered a viable alternative to manual triangulation of camera positions but is restricted to off-normal viewing directions.

Journal

Experiments in FluidsSpringer Journals

Published: Jun 13, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off