Assessment of biotoxicity of Cu nanoparticles with respect to probiotic strains of microorganisms and representatives of the normal flora of the intestine of broiler chickens

Assessment of biotoxicity of Cu nanoparticles with respect to probiotic strains of microorganisms... Copper nanoparticle Cu (d = 55 ± 15 nm) and CuO nanoparticles (d = 90 ± 10 nm) were used in the studies (OOO Platina, Russia). Using the method of pure cultures, we extracted Lactobacillus, Enterococcus, and Enterobacterium from the intestines of broilers. Additionally, strains of Bacillus subtilis 10641 and Bifidobacterium were involved in probiotic strains. The data obtained in the course of the study testify to the insignificant biotoxicity of copper nanoparticles with respect to representatives of the genera Lactobacillus (30 to 15 μg/ml) and Bifidobacterium (30 μg/ml), with the most sensitive bacteria being the genus Lactobacillus, for which a concentration of 7.5 μg/ml was subinhibitory. The second stage was the study using method of agar wells. In the course of the experiment, we obtained results confirming the data of the research by the serial dilution method. In this case, as in the first case, the data indicate the insignificant biotoxicity of copper nanoparticles in relation to representatives of the genera Lactobacillus and Bifidobacterium. We have studied the bioaccumulating ability of microorganisms of the studied metals. In all the studies carried out, as in the first series of experiments, representatives of the genera Lactobacillus and Bifidobacterium with the lowest bioaccumulative ability were the most sensitive to copper nanoparticles and were 3.1 and 8.2%, respectively. The use of nanoparticles as a component of the fodder additive in small concentrations does not adversely affect not only the probiotic strains, but also the main representatives of the normoflora (Lactobacillus, Enterococcus, and Enterobacterium) of the poultry, the positive effect of the copper nanoparticles being directly related to low level of dissociation of nanoparticles, since biologically active ions will be released much more slowly, thereby creating a prolonged effect of exposure. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Science and Pollution Research Springer Journals

Assessment of biotoxicity of Cu nanoparticles with respect to probiotic strains of microorganisms and representatives of the normal flora of the intestine of broiler chickens

Loading next page...
 
/lp/springer_journal/assessment-of-biotoxicity-of-cu-nanoparticles-with-respect-to-rYYu8C45CM
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Environment; Environment, general; Environmental Chemistry; Ecotoxicology; Environmental Health; Atmospheric Protection/Air Quality Control/Air Pollution; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution
ISSN
0944-1344
eISSN
1614-7499
D.O.I.
10.1007/s11356-018-1761-4
Publisher site
See Article on Publisher Site

Abstract

Copper nanoparticle Cu (d = 55 ± 15 nm) and CuO nanoparticles (d = 90 ± 10 nm) were used in the studies (OOO Platina, Russia). Using the method of pure cultures, we extracted Lactobacillus, Enterococcus, and Enterobacterium from the intestines of broilers. Additionally, strains of Bacillus subtilis 10641 and Bifidobacterium were involved in probiotic strains. The data obtained in the course of the study testify to the insignificant biotoxicity of copper nanoparticles with respect to representatives of the genera Lactobacillus (30 to 15 μg/ml) and Bifidobacterium (30 μg/ml), with the most sensitive bacteria being the genus Lactobacillus, for which a concentration of 7.5 μg/ml was subinhibitory. The second stage was the study using method of agar wells. In the course of the experiment, we obtained results confirming the data of the research by the serial dilution method. In this case, as in the first case, the data indicate the insignificant biotoxicity of copper nanoparticles in relation to representatives of the genera Lactobacillus and Bifidobacterium. We have studied the bioaccumulating ability of microorganisms of the studied metals. In all the studies carried out, as in the first series of experiments, representatives of the genera Lactobacillus and Bifidobacterium with the lowest bioaccumulative ability were the most sensitive to copper nanoparticles and were 3.1 and 8.2%, respectively. The use of nanoparticles as a component of the fodder additive in small concentrations does not adversely affect not only the probiotic strains, but also the main representatives of the normoflora (Lactobacillus, Enterococcus, and Enterobacterium) of the poultry, the positive effect of the copper nanoparticles being directly related to low level of dissociation of nanoparticles, since biologically active ions will be released much more slowly, thereby creating a prolonged effect of exposure.

Journal

Environmental Science and Pollution ResearchSpringer Journals

Published: Mar 26, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off