Assessing the potential of images from unmanned aerial vehicles (UAV) to support herbicide patch spraying in maize

Assessing the potential of images from unmanned aerial vehicles (UAV) to support herbicide patch... The capability of images acquired from unmanned aerial vehicles (UAVs), with multispectral cameras, to detect weed patches, should be tested in operational situations of site-specific weed management. In this regard, different post-emergence herbicide application strategies were evaluated on a total of four silage maize fields in Central Italy. The treatments compared were uniform blanket application, patch spraying according to the application map and an untreated control (the latter treatment only in the second year). Images were acquired a few weeks after maize emergence and were processed into application (i.e. prescription) maps. The accuracy of prescription maps was evaluated on the basis of ground-truth data. Maize and weed biomass data collected at end of the growing season were used to assess differences among the herbicide application strategies. Results showed no differences between uniform and patch spraying treatments for silage maize biomass in the two fields of the first year. In the second year, maize biomass differences were observed between the untreated control and the other two treatments. In terms of weed biomass there were no differences among treatments, for three out of four fields. The use of UAV image data captured early post-emergence in maize lead to a decrease in the use of herbicide without negative consequences in terms of crop yield and, at the same time, increased the silage biomass production as compared to non-treated area. The saving of herbicide calculated in terms of untreated area ranged between 14 and 39.2 % for patch spraying as compared to a uniform blanket application, and saved between 16 and 45 € ha−1. Precision Agriculture Springer Journals

Assessing the potential of images from unmanned aerial vehicles (UAV) to support herbicide patch spraying in maize

Loading next page...
Springer US
Copyright © 2016 by Springer Science+Business Media New York
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial