Asparagales Telomerases which Synthesize the Human Type of Telomeres

Asparagales Telomerases which Synthesize the Human Type of Telomeres The order of monocotyledonous plants Asparagales is attractive for studies of telomere evolution as it includes three phylogenetically distinct groups with telomeres composed of TTTAGGG (Arabidopsis-type), TTAGGG (human-type) and unknown alternative sequences, respectively. To analyze the molecular causes of these switches in telomere sequence (synthesis), genes coding for the catalytic telomerase subunit (TERT) of representative species in the first two groups have been cloned. Multiple alignments of the sequences, together with other TERT sequences in databases, suggested candidate amino acid substitutions grouped in the Asparagales TERT synthesizing the human-type repeat that could have contributed to the changed telomere sequence. Among these, mutations in the C motif are of special interest due to its functional importance in TERT. Furthermore, two different modes of initial elongation of the substrate primer were observed in Asparagales telomerases producing human-like repeats, which could be attributed to interactions between the telomerase RNA subunit (TR) and the substrate. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Asparagales Telomerases which Synthesize the Human Type of Telomeres

Loading next page...
 
/lp/springer_journal/asparagales-telomerases-which-synthesize-the-human-type-of-telomeres-Ci0XTYsmxF
Publisher
Springer Journals
Copyright
Copyright © 2006 by Springer
Subject
Life Sciences; Plant Sciences; Biochemistry, general; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-005-5091-9
Publisher site
See Article on Publisher Site

Abstract

The order of monocotyledonous plants Asparagales is attractive for studies of telomere evolution as it includes three phylogenetically distinct groups with telomeres composed of TTTAGGG (Arabidopsis-type), TTAGGG (human-type) and unknown alternative sequences, respectively. To analyze the molecular causes of these switches in telomere sequence (synthesis), genes coding for the catalytic telomerase subunit (TERT) of representative species in the first two groups have been cloned. Multiple alignments of the sequences, together with other TERT sequences in databases, suggested candidate amino acid substitutions grouped in the Asparagales TERT synthesizing the human-type repeat that could have contributed to the changed telomere sequence. Among these, mutations in the C motif are of special interest due to its functional importance in TERT. Furthermore, two different modes of initial elongation of the substrate primer were observed in Asparagales telomerases producing human-like repeats, which could be attributed to interactions between the telomerase RNA subunit (TR) and the substrate.

Journal

Plant Molecular BiologySpringer Journals

Published: Mar 1, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off