Artificially Applied Tensions Normalize Development of Relaxed Xenopus laevisEmbryos

Artificially Applied Tensions Normalize Development of Relaxed Xenopus laevisEmbryos Relaxation of tensions of the surface of Xenopus laevisembryos at the late blastula stage leads to deep and diverse developmental defects and increased variability in mutual position and volume ratios of the axial rudiments. Here, we demonstrate that the development of such embryos was markedly normalized if the relaxed tensions were restored in one of two ways: (1) isotropic stretching of the blastocoel roof induced by the incubation of relaxed embryos in a hypotonic medium or (2) anisotropic stretching of embryos on two needles. In the latter case, we succeeded in restoring the morphological axis not only after longitudinal stretching but also after transverse stretching, and the new axis had signs of anteroposterior polarity. The role of isotropic and anisotropic tensions in organization of the early amphibian development is discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Developmental Biology Springer Journals

Artificially Applied Tensions Normalize Development of Relaxed Xenopus laevisEmbryos

Loading next page...
 
/lp/springer_journal/artificially-applied-tensions-normalize-development-of-relaxed-xenopus-NSMCyUnswi
Publisher
Springer Journals
Copyright
Copyright © 2001 by MAIK “Nauka/Interperiodica”
Subject
Life Sciences; Animal Anatomy / Morphology / Histology
ISSN
1062-3604
eISSN
1608-3326
D.O.I.
10.1023/A:1016719219011
Publisher site
See Article on Publisher Site

Abstract

Relaxation of tensions of the surface of Xenopus laevisembryos at the late blastula stage leads to deep and diverse developmental defects and increased variability in mutual position and volume ratios of the axial rudiments. Here, we demonstrate that the development of such embryos was markedly normalized if the relaxed tensions were restored in one of two ways: (1) isotropic stretching of the blastocoel roof induced by the incubation of relaxed embryos in a hypotonic medium or (2) anisotropic stretching of embryos on two needles. In the latter case, we succeeded in restoring the morphological axis not only after longitudinal stretching but also after transverse stretching, and the new axis had signs of anteroposterior polarity. The role of isotropic and anisotropic tensions in organization of the early amphibian development is discussed.

Journal

Russian Journal of Developmental BiologySpringer Journals

Published: Oct 9, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off