Artificial neural networks and their potentialities in analyzing budget health data: an application for Italy of what-if theory

Artificial neural networks and their potentialities in analyzing budget health data: an... Since 1992 the Italian local health units (LHU) gained financial independence and became responsible to provide and deliver health care at the local level. Management and financial accounting represent the tool utilized to monitor their net income and the working capital every year. From 2001 on, LHU budget data have being summarized by means of the “income statement”. The income statement is considered the most relevant form for the monitoring of healthcare expenditures. A big amount of data have been collected after that obligation of publishing the income statement. The application of new methods for a better understanding of relationships among variables would be worthwhile. The development of artificial neural networks (ANNs) can represent a useful tool to analyze the relationships among these variables. The purpose of this paper is showing the potentialities of ANNs and especially of artificial neural networks what-if theory (AWIT) model when applied to health budgetary data. This innovative methodology has been employed, in the present paper, to analyze data from five Italian Regions, carrying out some comparison among them. In short, using one dataset that is defined as being the ideal standard containing the relationships necessary to measure desired outcomes, another dataset can be compared to determine its degree of closeness. We can determine the degree of closeness of the second or treated dataset with the original standard. This is the key concept of the method called AWIT. The descriptive analysis carried out outlines the areas of waste LHU and suggests to develop strategies to contrast an inefficient use of resources. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quality & Quantity Springer Journals

Artificial neural networks and their potentialities in analyzing budget health data: an application for Italy of what-if theory

Loading next page...
 
/lp/springer_journal/artificial-neural-networks-and-their-potentialities-in-analyzing-2TSaoUGHG0
Publisher
Springer Journals
Copyright
Copyright © 2016 by Springer Science+Business Media Dordrecht
Subject
Social Sciences; Methodology of the Social Sciences; Social Sciences, general
ISSN
0033-5177
eISSN
1573-7845
D.O.I.
10.1007/s11135-016-0329-y
Publisher site
See Article on Publisher Site

Abstract

Since 1992 the Italian local health units (LHU) gained financial independence and became responsible to provide and deliver health care at the local level. Management and financial accounting represent the tool utilized to monitor their net income and the working capital every year. From 2001 on, LHU budget data have being summarized by means of the “income statement”. The income statement is considered the most relevant form for the monitoring of healthcare expenditures. A big amount of data have been collected after that obligation of publishing the income statement. The application of new methods for a better understanding of relationships among variables would be worthwhile. The development of artificial neural networks (ANNs) can represent a useful tool to analyze the relationships among these variables. The purpose of this paper is showing the potentialities of ANNs and especially of artificial neural networks what-if theory (AWIT) model when applied to health budgetary data. This innovative methodology has been employed, in the present paper, to analyze data from five Italian Regions, carrying out some comparison among them. In short, using one dataset that is defined as being the ideal standard containing the relationships necessary to measure desired outcomes, another dataset can be compared to determine its degree of closeness. We can determine the degree of closeness of the second or treated dataset with the original standard. This is the key concept of the method called AWIT. The descriptive analysis carried out outlines the areas of waste LHU and suggests to develop strategies to contrast an inefficient use of resources.

Journal

Quality & QuantitySpringer Journals

Published: Mar 24, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off