Artificial inversion of the left–right visceral asymmetry in vertebrates: Conceptual approaches and experimental solutions

Artificial inversion of the left–right visceral asymmetry in vertebrates: Conceptual approaches... Externally, vertebrates are bilaterally symmetrical; however, left–right asymmetry is observed in the structure of their internal organs and systems of organs (circulatory, digestive, and respiratory). In addition to the asymmetry of internal organs (visceral), there is also functional (i.e., asymmetrical functioning of organs on the left and right sides of the body) and behavioral asymmetry. The question of a possible association between different types of asymmetry is still open. The study of the mechanisms of such association, in addition to the fundamental interest, has important applications for biomedicine, primarily for the understanding of the brain functioning in health and disease and for the development of methods of treatment of certain mental diseases, such as schizophrenia and autism, for which the disturbance of left–right asymmetry of the brain was shown. To study the deep association between different types of asymmetry, it is necessary to obtain adequate animal models (primarily animals with inverted visceral organs, situs inversus totalis). There are two main possible approaches to obtaining such model organisms: mutagenesis followed by selection of mutant strains with mutations in the genes that affect the formation of the left–right visceral asymmetry and experimental obtaining of animals with inverted internal organs. This review focuses on the second approach. We describe the theoretical models for establishing left–right asymmetry and possible experimental approaches to obtaining animals with inverted internal organs. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Developmental Biology Springer Journals

Artificial inversion of the left–right visceral asymmetry in vertebrates: Conceptual approaches and experimental solutions

Loading next page...
 
/lp/springer_journal/artificial-inversion-of-the-left-right-visceral-asymmetry-in-2JvwURQCur
Publisher
Pleiades Publishing
Copyright
Copyright © 2015 by Pleiades Publishing, Inc.
Subject
Life Sciences; Developmental Biology; Animal Anatomy / Morphology / Histology
ISSN
1062-3604
eISSN
1608-3326
D.O.I.
10.1134/S1062360415060090
Publisher site
See Article on Publisher Site

Abstract

Externally, vertebrates are bilaterally symmetrical; however, left–right asymmetry is observed in the structure of their internal organs and systems of organs (circulatory, digestive, and respiratory). In addition to the asymmetry of internal organs (visceral), there is also functional (i.e., asymmetrical functioning of organs on the left and right sides of the body) and behavioral asymmetry. The question of a possible association between different types of asymmetry is still open. The study of the mechanisms of such association, in addition to the fundamental interest, has important applications for biomedicine, primarily for the understanding of the brain functioning in health and disease and for the development of methods of treatment of certain mental diseases, such as schizophrenia and autism, for which the disturbance of left–right asymmetry of the brain was shown. To study the deep association between different types of asymmetry, it is necessary to obtain adequate animal models (primarily animals with inverted visceral organs, situs inversus totalis). There are two main possible approaches to obtaining such model organisms: mutagenesis followed by selection of mutant strains with mutations in the genes that affect the formation of the left–right visceral asymmetry and experimental obtaining of animals with inverted internal organs. This review focuses on the second approach. We describe the theoretical models for establishing left–right asymmetry and possible experimental approaches to obtaining animals with inverted internal organs.

Journal

Russian Journal of Developmental BiologySpringer Journals

Published: Nov 18, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off