Are rice chromosomes components of a holocentric chromosome ancestor?

Are rice chromosomes components of a holocentric chromosome ancestor? Comparative genomics reveals that cereal genomes are composed of similar genomic building blocks (linkage blocks). By stacking these blocks in a unique order, it is possible to construct a single ancestral ‘chromosome’ which can be cleaved to give the basic structure of the 56 different chromosomes found in wheat, rice, maize, sorghum, millet and sugarcane. The borders of linkage blocks are defined by cereal centromeric and telomeric sites. However, a number of studies have shown that telomeric heterochromatin has neocentromeric activity, implying that linkage blocks are in fact defined by centromeric-like sites with conserved sequences. The structure of the ancestral cereal genome thus resembles a holocentric chromosome, which is the chromosome structure shared by the closest relatives of the Gramineae, the Cypericeae and Juncaceae. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Are rice chromosomes components of a holocentric chromosome ancestor?

Loading next page...
 
/lp/springer_journal/are-rice-chromosomes-components-of-a-holocentric-chromosome-ancestor-ScwvyE7rH3
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 1997 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1005849912205
Publisher site
See Article on Publisher Site

Abstract

Comparative genomics reveals that cereal genomes are composed of similar genomic building blocks (linkage blocks). By stacking these blocks in a unique order, it is possible to construct a single ancestral ‘chromosome’ which can be cleaved to give the basic structure of the 56 different chromosomes found in wheat, rice, maize, sorghum, millet and sugarcane. The borders of linkage blocks are defined by cereal centromeric and telomeric sites. However, a number of studies have shown that telomeric heterochromatin has neocentromeric activity, implying that linkage blocks are in fact defined by centromeric-like sites with conserved sequences. The structure of the ancestral cereal genome thus resembles a holocentric chromosome, which is the chromosome structure shared by the closest relatives of the Gramineae, the Cypericeae and Juncaceae.

Journal

Plant Molecular BiologySpringer Journals

Published: Sep 30, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off