Are marginalized two-part models superior to non-marginalized two-part models for count data with excess zeroes? Estimation of marginal effects, model misspecification, and model selection

Are marginalized two-part models superior to non-marginalized two-part models for count data with... The marginalized two-part models, including the marginalized zero-inflated Poisson and negative binomial models, have been proposed in the literature for modelling cross-sectional healthcare utilization count data with excess zeroes and overdispersion. The motivation for these proposals was to directly capture the overall marginal effects and to avoid post-modelling effect calculations that are needed for the non-marginalized conventional two-part models. However, are marginalized two-part models superior to non-marginalized two-part models because of their structural property? Is it true that the marginalized two-part models can provide direct marginal inference? This article aims to answer these questions through a comprehensive investigation. We first summarize the existing non-marginalized and marginalized two-part models and then develop marginalized hurdle Poisson and negative binomial models for cross-sectional count data with abundant zero counts. Our interest in the investigation lies particularly in the (average) marginal effect and (average) incremental effect and the comparison of these effects. The estimators of these effects are presented, and variance estimators are derived by using delta methods and Taylor series approximations. Though the marginalized models attract attention because of the alleged convenience of direct marginal inference, we provide evidence for the impact of model misspecification of the marginalized models over the conventional models, and provide evidence for the importance of goodness-of-fit evaluation and model selection in differentiating between the marginalized and non-marginalized models. An empirical analysis of the German Socioeconomic Panel data is presented. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Health Services and Outcomes Research Methodology Springer Journals

Are marginalized two-part models superior to non-marginalized two-part models for count data with excess zeroes? Estimation of marginal effects, model misspecification, and model selection

Loading next page...
 
/lp/springer_journal/are-marginalized-two-part-models-superior-to-non-marginalized-two-part-j2jHlMmjXF
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer Science+Business Media, LLC, part of Springer Nature
Subject
Medicine & Public Health; Public Health; Statistics, general; Economics, general; Methodology of the Social Sciences; Health Administration
ISSN
1387-3741
eISSN
1572-9400
D.O.I.
10.1007/s10742-018-0183-6
Publisher site
See Article on Publisher Site

Abstract

The marginalized two-part models, including the marginalized zero-inflated Poisson and negative binomial models, have been proposed in the literature for modelling cross-sectional healthcare utilization count data with excess zeroes and overdispersion. The motivation for these proposals was to directly capture the overall marginal effects and to avoid post-modelling effect calculations that are needed for the non-marginalized conventional two-part models. However, are marginalized two-part models superior to non-marginalized two-part models because of their structural property? Is it true that the marginalized two-part models can provide direct marginal inference? This article aims to answer these questions through a comprehensive investigation. We first summarize the existing non-marginalized and marginalized two-part models and then develop marginalized hurdle Poisson and negative binomial models for cross-sectional count data with abundant zero counts. Our interest in the investigation lies particularly in the (average) marginal effect and (average) incremental effect and the comparison of these effects. The estimators of these effects are presented, and variance estimators are derived by using delta methods and Taylor series approximations. Though the marginalized models attract attention because of the alleged convenience of direct marginal inference, we provide evidence for the impact of model misspecification of the marginalized models over the conventional models, and provide evidence for the importance of goodness-of-fit evaluation and model selection in differentiating between the marginalized and non-marginalized models. An empirical analysis of the German Socioeconomic Panel data is presented.

Journal

Health Services and Outcomes Research MethodologySpringer Journals

Published: Jun 5, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off