Architecture of multi-OLT PON systems and its bandwidth allocation algorithms

Architecture of multi-OLT PON systems and its bandwidth allocation algorithms In this paper, we propose a novel passive optical network (PON) architecture that has multiple optical line terminals (OLTs). Unlike existing PONs where all ONUs are connected to a single OLT, the proposed multi-OLT PON allows subscribers to choose their own service providers from among multiple OLTs. Service companies and subscribers can make service level agreements (SLA) on the amount of bandwidth that each OLT or ONU requires. A new control protocol and bandwidth allocation algorithms appropriate in this new PON environments are suggested. For the downstream, a scheme to share the bandwidth among multiple OLTs is studied to maximize the total transmitted packets while guaranteeing each OLT’s SLA. A modified Limited Dynamic Bandwidth Allocation named mLimited scheme is also proposed for upstream transmission toward multiple OLTs, which maximizes the total upstream throughput while minimizing the delay of each ONU. Performances of the proposed PON architecture and algorithms are analyzed. A PON system with two OLTs and 16 ONUs is used in the analysis. Self-similar traffic reflecting current packet distribution is used in the packet generation. The results show that the proposed DBA schemes efficiently manage bandwidth even when the occurred traffic load is quite different from the reserved bandwidth. It is found that the proposed PON architecture is appropriate in supporting diverse services in future high-speed optical access network. Photonic Network Communications Springer Journals

Architecture of multi-OLT PON systems and its bandwidth allocation algorithms

Loading next page...
Springer US
Copyright © 2013 by Springer Science+Business Media New York
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
Publisher site
See Article on Publisher Site


  • An introduction to PON technologies
    Effenberger, F; Cleary, D; Haran, O; Kramer, G; Li, RD; Oron, M; Pfeiffer, T

You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial