Architecture mode, sedimentary evolution and controlling factors of deepwater turbidity channels: A case study of the M Oilfield in West Africa

Architecture mode, sedimentary evolution and controlling factors of deepwater turbidity channels:... Turbidity channels have been considered as one of the important types of deepwater reservoir, and the study of their architecture plays a key role in efficient development of an oil field. To better understand the reservoir architecture of the lower Congo Basin M oilfield, semi-quantitative–quantitative study on turbidity channel depositional architecture patterns in the middle to lower slopes was conducted with the aid of abundant high quality materials (core, outcrop, logging and seismic data), employing seismic stratigraphy, seismic sedimentology and sedimentary petrography methods. Then, its sedimentary evolution was analyzed accordingly. The results indicated that in the study area, grade 3 to grade 5 architecture units were single channel, complex channel and channel systems, respectively. Single channel sinuosity is negatively correlated with the slope, as internal grains became finer and thickness became thinner from bottom to top, axis to edge. The migration type of a single channel within one complex channel can be lateral migration and along paleocurrent migration horizontally, and lateral, indented and swing stacking in section view. Based on external morphological characteristics and boundaries, channel systems are comprised of a weakly confining type and a non-confining type. The O73 channel system can be divided into four complex channels named S1–S4, from bottom to top, with gradually less incision and more accretion. The study in this article will promote deeper understanding of turbidity channel theory, guide 3D geological modeling in reservoir development and contribute to efficient development of such reservoirs. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Petroleum Science Springer Journals

Architecture mode, sedimentary evolution and controlling factors of deepwater turbidity channels: A case study of the M Oilfield in West Africa

Loading next page...
 
/lp/springer_journal/architecture-mode-sedimentary-evolution-and-controlling-factors-of-4bdsEewAKG
Publisher
Springer Journals
Copyright
Copyright © 2017 by The Author(s)
Subject
Earth Sciences; Mineral Resources; Industrial Chemistry/Chemical Engineering; Industrial and Production Engineering; Energy Economics
ISSN
1672-5107
eISSN
1995-8226
D.O.I.
10.1007/s12182-017-0181-2
Publisher site
See Article on Publisher Site

Abstract

Turbidity channels have been considered as one of the important types of deepwater reservoir, and the study of their architecture plays a key role in efficient development of an oil field. To better understand the reservoir architecture of the lower Congo Basin M oilfield, semi-quantitative–quantitative study on turbidity channel depositional architecture patterns in the middle to lower slopes was conducted with the aid of abundant high quality materials (core, outcrop, logging and seismic data), employing seismic stratigraphy, seismic sedimentology and sedimentary petrography methods. Then, its sedimentary evolution was analyzed accordingly. The results indicated that in the study area, grade 3 to grade 5 architecture units were single channel, complex channel and channel systems, respectively. Single channel sinuosity is negatively correlated with the slope, as internal grains became finer and thickness became thinner from bottom to top, axis to edge. The migration type of a single channel within one complex channel can be lateral migration and along paleocurrent migration horizontally, and lateral, indented and swing stacking in section view. Based on external morphological characteristics and boundaries, channel systems are comprised of a weakly confining type and a non-confining type. The O73 channel system can be divided into four complex channels named S1–S4, from bottom to top, with gradually less incision and more accretion. The study in this article will promote deeper understanding of turbidity channel theory, guide 3D geological modeling in reservoir development and contribute to efficient development of such reservoirs.

Journal

Petroleum ScienceSpringer Journals

Published: Jul 27, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off