Arabidopsis thaliana contains a single gene encoding squalene synthase

Arabidopsis thaliana contains a single gene encoding squalene synthase Squalene synthase (SQS) catalyzes the condensation of two molecules of farnesyl diphosphate (FPP) to produce squalene (SQ), the first committed precursor for sterol, brassinosteroid, and triterpene biosynthesis. Arabidopsis thaliana contains two SQS-annotated genomic sequences, At4g34640 (SQS1) and At4g34650 (SQS2), organized in a tandem array. Here we report that the SQS1 gene is widely expressed in all tissues throughout plant development, whereas SQS2 is primarily expressed in the vascular tissue of leaf and cotyledon petioles, and the hypocotyl of seedlings. Neither the complete A. thaliana SQS2 protein nor the chimeric SQS resulting from the replacement of the 69 C-terminal residues of SQS2 by the 111 C-terminal residues of the Schizosaccharomyces pombe SQS were able to confer ergosterol prototrophy to a Saccharomyces cerevisiae erg9 mutant strain lacking SQS activity. A soluble form of SQS2 expressed in Escherichia coli and purified was unable to synthesize SQ from FPP in the presence of NADPH and either Mg2+ or Mn2+. These results demonstrated that SQS2 has no SQS activity, so that SQS1 is the only functional SQS in A. thaliana. Mutational studies revealed that the lack of SQS activity of SQS2 cannot be exclusively attributed to the presence of an unusual Ser replacing the highly conserved Phe at position 287. Expression of green fluorescent protein (GFP)-tagged versions of SQS1 in onion epidermal cells demonstrated that SQS1 is targeted to the endoplasmic reticulum (ER) membrane and that this location is exclusively dependent on the presence of the SQS1 C-terminal hydrophobic trans-membrane domain. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Arabidopsis thaliana contains a single gene encoding squalene synthase

Loading next page...
 
/lp/springer_journal/arabidopsis-thaliana-contains-a-single-gene-encoding-squalene-synthase-fVZdIDQhXQ
Publisher
Springer Netherlands
Copyright
Copyright © 2008 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-008-9299-3
Publisher site
See Article on Publisher Site

Abstract

Squalene synthase (SQS) catalyzes the condensation of two molecules of farnesyl diphosphate (FPP) to produce squalene (SQ), the first committed precursor for sterol, brassinosteroid, and triterpene biosynthesis. Arabidopsis thaliana contains two SQS-annotated genomic sequences, At4g34640 (SQS1) and At4g34650 (SQS2), organized in a tandem array. Here we report that the SQS1 gene is widely expressed in all tissues throughout plant development, whereas SQS2 is primarily expressed in the vascular tissue of leaf and cotyledon petioles, and the hypocotyl of seedlings. Neither the complete A. thaliana SQS2 protein nor the chimeric SQS resulting from the replacement of the 69 C-terminal residues of SQS2 by the 111 C-terminal residues of the Schizosaccharomyces pombe SQS were able to confer ergosterol prototrophy to a Saccharomyces cerevisiae erg9 mutant strain lacking SQS activity. A soluble form of SQS2 expressed in Escherichia coli and purified was unable to synthesize SQ from FPP in the presence of NADPH and either Mg2+ or Mn2+. These results demonstrated that SQS2 has no SQS activity, so that SQS1 is the only functional SQS in A. thaliana. Mutational studies revealed that the lack of SQS activity of SQS2 cannot be exclusively attributed to the presence of an unusual Ser replacing the highly conserved Phe at position 287. Expression of green fluorescent protein (GFP)-tagged versions of SQS1 in onion epidermal cells demonstrated that SQS1 is targeted to the endoplasmic reticulum (ER) membrane and that this location is exclusively dependent on the presence of the SQS1 C-terminal hydrophobic trans-membrane domain.

Journal

Plant Molecular BiologySpringer Journals

Published: Jan 31, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off