Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Arabidopsis metallothioneins 2a and 3 enhance resistance to cadmium when expressed in Vicia faba guard cells

Arabidopsis metallothioneins 2a and 3 enhance resistance to cadmium when expressed in Vicia faba... The Arabidopsis metallothionein genes AtMT1andAtMT2confer Cd(II) resistance to Cd(II)-sensitive yeast, but it has not been directly shown whether they or other metallothioneins provide the same protection to plants. We tested whether AtMT2aandAtMT3can confer Cd(II) resistance to plant cells by introducing GFP- or RFP-fused forms into guard cells of Vicia faba by biolistic bombardment. AtMT2a and AtMT3 protected guard cell chloroplasts from degradation upon exposure to Cd(II), an effect that was confirmed using an FDA assay to test the viability of the exposed guard cells. AtMT2a- and AtMT3-GFP were localized in the cytoplasm both before and after treatment of V. faba guard cells or Arabidopsis protoplasts with Cd(II), and the levels of reactive oxygen species were lower in transformed guard cells than in non-transformed cells after Cd(II)-treatment. These results suggest that the Cd(II)-detoxification mechanism of AtMT2a and AtMT3 may not include sequestration into vacuoles or other organelles, but does involve reduction of the level of reactive oxygen species in Cd(II)-treated cells. Increased expression of AtMT2a and AtMT3 was observed in Arabidopsis seedlings exposed to Cd(II). Together, these data support a role for the metallothioneins AtMT2a and AtMT3 in Cd(II) resistance in intact plant cells. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Arabidopsis metallothioneins 2a and 3 enhance resistance to cadmium when expressed in Vicia faba guard cells

Loading next page...
 
/lp/springer_journal/arabidopsis-metallothioneins-2a-and-3-enhance-resistance-to-cadmium-XWcgxBvpDX

References (31)

Publisher
Springer Journals
Copyright
Copyright © 2004 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
DOI
10.1007/s11103-004-0190-6
pmid
15604653
Publisher site
See Article on Publisher Site

Abstract

The Arabidopsis metallothionein genes AtMT1andAtMT2confer Cd(II) resistance to Cd(II)-sensitive yeast, but it has not been directly shown whether they or other metallothioneins provide the same protection to plants. We tested whether AtMT2aandAtMT3can confer Cd(II) resistance to plant cells by introducing GFP- or RFP-fused forms into guard cells of Vicia faba by biolistic bombardment. AtMT2a and AtMT3 protected guard cell chloroplasts from degradation upon exposure to Cd(II), an effect that was confirmed using an FDA assay to test the viability of the exposed guard cells. AtMT2a- and AtMT3-GFP were localized in the cytoplasm both before and after treatment of V. faba guard cells or Arabidopsis protoplasts with Cd(II), and the levels of reactive oxygen species were lower in transformed guard cells than in non-transformed cells after Cd(II)-treatment. These results suggest that the Cd(II)-detoxification mechanism of AtMT2a and AtMT3 may not include sequestration into vacuoles or other organelles, but does involve reduction of the level of reactive oxygen species in Cd(II)-treated cells. Increased expression of AtMT2a and AtMT3 was observed in Arabidopsis seedlings exposed to Cd(II). Together, these data support a role for the metallothioneins AtMT2a and AtMT3 in Cd(II) resistance in intact plant cells.

Journal

Plant Molecular BiologySpringer Journals

Published: Dec 30, 2004

There are no references for this article.