Arabidopsis immunophilins ROF1 (AtFKBP62) and ROF2 (AtFKBP65) exhibit tissue specificity, are heat-stress induced, and bind HSP90

Arabidopsis immunophilins ROF1 (AtFKBP62) and ROF2 (AtFKBP65) exhibit tissue specificity, are... The plant co-chaperones FK506-binding proteins (FKBPs) are peptidyl prolyl cis-trans isomerases that function in protein folding, signal transduction and chaperone activity. We report the characterization of the Arabidopsis large FKBPs ROF1 (AtFKBP62) and ROF2 (AtFKBP65) expression and protein accumulation patterns. Transgenic plants expressing ROF1 promoter fused to GUS reporter gene reveal that ROF1 expression is organ specific. High expression was observed in the vascular elements of roots, in hydathodes and trichomes of leaves and in stigma, sepals, and anthers. The tissue specificity and temporal expression of ROF1 and ROF2 show that they are developmentally regulated. Although ROF1 and ROF2 share 85% identity, their expression in response to heat stress is differentially regulated. Both genes are induced in plants exposed to 37 °C, but only ROF2 is a bonafide heat-stress protein, undetected when plants are grown at 22 °C. ROF1/ROF2 proteins accumulate at 37 °C, remain stable for at least 4 h upon recovery at 22 °C, whereas, their mRNA level is reduced after 1 h at 22 °C. By protein interaction assays, it was demonstrated, that ROF1 is a novel partner of HSP90. The five amino acids identified as essential for recognition and interaction between the mammalian chaperones and HSP90 are conserved in the plant ROF1-HSP90. We suggest that ROF/HSP90 complexes assemble in vivo. We propose that specific complexes formation between an HSP90 and ROF isoforms depends on their spatial and temporal expression. Such complexes might be regulated by environmental conditions such as heat stress or internal cues such as different hormones. Plant Molecular Biology Springer Journals

Arabidopsis immunophilins ROF1 (AtFKBP62) and ROF2 (AtFKBP65) exhibit tissue specificity, are heat-stress induced, and bind HSP90

Loading next page...
Kluwer Academic Publishers
Copyright © 2006 by Springer Science+Business Media B.V.
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial