Arabidopsis EMBRYOMAKER encoding an AP2 domain transcription factor plays a key role in developmental change from vegetative to embryonic phase

Arabidopsis EMBRYOMAKER encoding an AP2 domain transcription factor plays a key role in... Although several types of plant cells retain the competence to enter into embryonic development without fertilization, the molecular mechanism(s) underlying ectopic embryogenesis is largely unknown. To gain insight into this mechanism, in a previous study we identified 136 ESTs specifically expressed in microspore embryogenesis of Brassica napus. Here, we describe the characterization of the Arabidopsis EMBRYOMAKER (EMK) gene, which is homologous to one of the identified Brassica ESTs (BnGemb-58) and encodes an AP2 domain transcription factor. The AtEMK was expressed in developing and mature embryos, but its rapid disappearance occurred during germination. After germination, the expression of AtEMK was found in the root apical meristem and the distal parts of cotyledons. Although a mutant lacking AtEMK exhibited no distinctive defects in the embryo, ectopic expression of AtEMK induced embryo-like structures from cotyledons. The embryo-like structures contained high concentration of lipids, expressed several embryo-specific genes, and could convert into independent plants, indicating that the structures are somatic embryos. In vitro culture, AtEMK enhanced the efficiency of somatic embryogenesis. Furthermore, ectopic expression of AtEMK caused the formation of trichomes on cotyledons, dedifferentiated several tissues into calli, and retarded root development, demonstrating that AtEMK is harmful for the normal development of plants after germination. From these results, we conclude that the AtEMK is a key player to maintain embryonic identity, and the rapid disappearance of AtEMK expression during germination is essential for the developmental transition between the embryonic and vegetative phases in plants. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Arabidopsis EMBRYOMAKER encoding an AP2 domain transcription factor plays a key role in developmental change from vegetative to embryonic phase

Loading next page...
 
/lp/springer_journal/arabidopsis-embryomaker-encoding-an-ap2-domain-transcription-factor-mNBP68pMVl
Publisher
Springer Netherlands
Copyright
Copyright © 2010 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-010-9634-3
Publisher site
See Article on Publisher Site

Abstract

Although several types of plant cells retain the competence to enter into embryonic development without fertilization, the molecular mechanism(s) underlying ectopic embryogenesis is largely unknown. To gain insight into this mechanism, in a previous study we identified 136 ESTs specifically expressed in microspore embryogenesis of Brassica napus. Here, we describe the characterization of the Arabidopsis EMBRYOMAKER (EMK) gene, which is homologous to one of the identified Brassica ESTs (BnGemb-58) and encodes an AP2 domain transcription factor. The AtEMK was expressed in developing and mature embryos, but its rapid disappearance occurred during germination. After germination, the expression of AtEMK was found in the root apical meristem and the distal parts of cotyledons. Although a mutant lacking AtEMK exhibited no distinctive defects in the embryo, ectopic expression of AtEMK induced embryo-like structures from cotyledons. The embryo-like structures contained high concentration of lipids, expressed several embryo-specific genes, and could convert into independent plants, indicating that the structures are somatic embryos. In vitro culture, AtEMK enhanced the efficiency of somatic embryogenesis. Furthermore, ectopic expression of AtEMK caused the formation of trichomes on cotyledons, dedifferentiated several tissues into calli, and retarded root development, demonstrating that AtEMK is harmful for the normal development of plants after germination. From these results, we conclude that the AtEMK is a key player to maintain embryonic identity, and the rapid disappearance of AtEMK expression during germination is essential for the developmental transition between the embryonic and vegetative phases in plants.

Journal

Plant Molecular BiologySpringer Journals

Published: Apr 20, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off