Arabidopsis EMBRYOMAKER encoding an AP2 domain transcription factor plays a key role in developmental change from vegetative to embryonic phase

Arabidopsis EMBRYOMAKER encoding an AP2 domain transcription factor plays a key role in... Although several types of plant cells retain the competence to enter into embryonic development without fertilization, the molecular mechanism(s) underlying ectopic embryogenesis is largely unknown. To gain insight into this mechanism, in a previous study we identified 136 ESTs specifically expressed in microspore embryogenesis of Brassica napus. Here, we describe the characterization of the Arabidopsis EMBRYOMAKER (EMK) gene, which is homologous to one of the identified Brassica ESTs (BnGemb-58) and encodes an AP2 domain transcription factor. The AtEMK was expressed in developing and mature embryos, but its rapid disappearance occurred during germination. After germination, the expression of AtEMK was found in the root apical meristem and the distal parts of cotyledons. Although a mutant lacking AtEMK exhibited no distinctive defects in the embryo, ectopic expression of AtEMK induced embryo-like structures from cotyledons. The embryo-like structures contained high concentration of lipids, expressed several embryo-specific genes, and could convert into independent plants, indicating that the structures are somatic embryos. In vitro culture, AtEMK enhanced the efficiency of somatic embryogenesis. Furthermore, ectopic expression of AtEMK caused the formation of trichomes on cotyledons, dedifferentiated several tissues into calli, and retarded root development, demonstrating that AtEMK is harmful for the normal development of plants after germination. From these results, we conclude that the AtEMK is a key player to maintain embryonic identity, and the rapid disappearance of AtEMK expression during germination is essential for the developmental transition between the embryonic and vegetative phases in plants. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Arabidopsis EMBRYOMAKER encoding an AP2 domain transcription factor plays a key role in developmental change from vegetative to embryonic phase

Loading next page...
 
/lp/springer_journal/arabidopsis-embryomaker-encoding-an-ap2-domain-transcription-factor-mNBP68pMVl
Publisher
Springer Journals
Copyright
Copyright © 2010 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-010-9634-3
Publisher site
See Article on Publisher Site

Abstract

Although several types of plant cells retain the competence to enter into embryonic development without fertilization, the molecular mechanism(s) underlying ectopic embryogenesis is largely unknown. To gain insight into this mechanism, in a previous study we identified 136 ESTs specifically expressed in microspore embryogenesis of Brassica napus. Here, we describe the characterization of the Arabidopsis EMBRYOMAKER (EMK) gene, which is homologous to one of the identified Brassica ESTs (BnGemb-58) and encodes an AP2 domain transcription factor. The AtEMK was expressed in developing and mature embryos, but its rapid disappearance occurred during germination. After germination, the expression of AtEMK was found in the root apical meristem and the distal parts of cotyledons. Although a mutant lacking AtEMK exhibited no distinctive defects in the embryo, ectopic expression of AtEMK induced embryo-like structures from cotyledons. The embryo-like structures contained high concentration of lipids, expressed several embryo-specific genes, and could convert into independent plants, indicating that the structures are somatic embryos. In vitro culture, AtEMK enhanced the efficiency of somatic embryogenesis. Furthermore, ectopic expression of AtEMK caused the formation of trichomes on cotyledons, dedifferentiated several tissues into calli, and retarded root development, demonstrating that AtEMK is harmful for the normal development of plants after germination. From these results, we conclude that the AtEMK is a key player to maintain embryonic identity, and the rapid disappearance of AtEMK expression during germination is essential for the developmental transition between the embryonic and vegetative phases in plants.

Journal

Plant Molecular BiologySpringer Journals

Published: Apr 20, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off