Arabidopsis drought-induced protein Di19-3 participates in plant response to drought and high salinity stresses

Arabidopsis drought-induced protein Di19-3 participates in plant response to drought and high... Di19 (drought-induced protein19) family is a novel type of Cys2/His2 zinc-finger proteins. In this study, Arabidopsis Di19-3 was functionally characterized. The experimental results revealed that AtDi19-3 is a transcriptional activator, and could bind to the TACA(A/G)T sequence. AtDi19-3 expression in plants was remarkably induced by NaCl, mannitol and abscisic acid (ABA). T-DNA insertion mutation of AtDi19-3 results in an increase in plant tolerance to drought and high salinity stresses and ABA, whereas overexpression of AtDi19-3 leads to a drought-, salt- and ABA-sensitive phenotype of the transgenic plants. In the presence of NaCl, mannitol or ABA, rates of seed germination and cotyledon greening in Atdi19-3 mutant were higher, but in AtDi19-3 overexpression transgenic plants were lower than those in wild type. Roots of Atdi19-3 mutant seedlings were longer, but those of AtDi19-3 overexpression transgenic seedlings were shorter than those of wild type. Chlorophyll and proline contents in Atdi19-3 mutant were higher, but in AtDi19-3 overexpression seedlings were lower than those in wild type. Atdi19-3 mutant showed greater drought-tolerance, whereas AtDi19-3 overexpression transgenic plants exhibited more drought-sensitivity than wild type. Furthermore, expression of the genes related to ABA signaling pathway was altered in Atdi19-3 mutant and AtDi19-3 transgenic plants. These data suggest that AtDi19-3 may participate in plant response to drought and salt stresses in an ABA-dependent manner. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Arabidopsis drought-induced protein Di19-3 participates in plant response to drought and high salinity stresses

Loading next page...
 
/lp/springer_journal/arabidopsis-drought-induced-protein-di19-3-participates-in-plant-1fgzxdymwB
Publisher
Springer Journals
Copyright
Copyright © 2014 by Springer Science+Business Media Dordrecht
Subject
Life Sciences; Plant Sciences; Biochemistry, general; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-014-0251-4
Publisher site
See Article on Publisher Site

Abstract

Di19 (drought-induced protein19) family is a novel type of Cys2/His2 zinc-finger proteins. In this study, Arabidopsis Di19-3 was functionally characterized. The experimental results revealed that AtDi19-3 is a transcriptional activator, and could bind to the TACA(A/G)T sequence. AtDi19-3 expression in plants was remarkably induced by NaCl, mannitol and abscisic acid (ABA). T-DNA insertion mutation of AtDi19-3 results in an increase in plant tolerance to drought and high salinity stresses and ABA, whereas overexpression of AtDi19-3 leads to a drought-, salt- and ABA-sensitive phenotype of the transgenic plants. In the presence of NaCl, mannitol or ABA, rates of seed germination and cotyledon greening in Atdi19-3 mutant were higher, but in AtDi19-3 overexpression transgenic plants were lower than those in wild type. Roots of Atdi19-3 mutant seedlings were longer, but those of AtDi19-3 overexpression transgenic seedlings were shorter than those of wild type. Chlorophyll and proline contents in Atdi19-3 mutant were higher, but in AtDi19-3 overexpression seedlings were lower than those in wild type. Atdi19-3 mutant showed greater drought-tolerance, whereas AtDi19-3 overexpression transgenic plants exhibited more drought-sensitivity than wild type. Furthermore, expression of the genes related to ABA signaling pathway was altered in Atdi19-3 mutant and AtDi19-3 transgenic plants. These data suggest that AtDi19-3 may participate in plant response to drought and salt stresses in an ABA-dependent manner.

Journal

Plant Molecular BiologySpringer Journals

Published: Sep 14, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off