Arabidopsis CBF5 interacts with the H/ACA snoRNP assembly factor NAF1

Arabidopsis CBF5 interacts with the H/ACA snoRNP assembly factor NAF1 The conserved protein CBF5, initially regarded as a centromere binding protein in yeast and higher plants, was later found within nucleoli and in Cajal bodies of yeast and metazoa. There, it is assumed to be involved in posttranscriptional pseudouridinylation of various RNA species that might be important for RNA processing. We found EYFP-labeled CBF5 of A. thaliana to be located within nucleoli and Cajal bodies, but neither at centromeres nor somewhere else on chromosomes. Arabidopsis mutants carrying a homozygous T-DNA insertion at the CBF5 locus were lethal. Yeast two-hybrid and mRNA expression analyses demonstrated that AtCBF5 is co-expressed and interacts with a previously uncharacterized protein containing a conserved NAF1 domain, presumably involved in H/ACA box snoRNP biogenesis. The homologous yeast protein has been shown to contribute to RNA pseudouridinylation. Thus, AtCBF5 might have an essential function in RNA processing rather than being a kinetochore protein. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Arabidopsis CBF5 interacts with the H/ACA snoRNP assembly factor NAF1

Loading next page...
 
/lp/springer_journal/arabidopsis-cbf5-interacts-with-the-h-aca-snornp-assembly-factor-naf1-1iu0iofmC9
Publisher
Springer Netherlands
Copyright
Copyright © 2007 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-007-9226-z
Publisher site
See Article on Publisher Site

Abstract

The conserved protein CBF5, initially regarded as a centromere binding protein in yeast and higher plants, was later found within nucleoli and in Cajal bodies of yeast and metazoa. There, it is assumed to be involved in posttranscriptional pseudouridinylation of various RNA species that might be important for RNA processing. We found EYFP-labeled CBF5 of A. thaliana to be located within nucleoli and Cajal bodies, but neither at centromeres nor somewhere else on chromosomes. Arabidopsis mutants carrying a homozygous T-DNA insertion at the CBF5 locus were lethal. Yeast two-hybrid and mRNA expression analyses demonstrated that AtCBF5 is co-expressed and interacts with a previously uncharacterized protein containing a conserved NAF1 domain, presumably involved in H/ACA box snoRNP biogenesis. The homologous yeast protein has been shown to contribute to RNA pseudouridinylation. Thus, AtCBF5 might have an essential function in RNA processing rather than being a kinetochore protein.

Journal

Plant Molecular BiologySpringer Journals

Published: Aug 22, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off