Aquatic plants for phytostabilization of cadmium and zinc in hydroponic experiments

Aquatic plants for phytostabilization of cadmium and zinc in hydroponic experiments Cadmium (Cd) may be toxic to aquatic plants even at modest concentrations, and excessive quantities of zinc (Zn) decrease plant performance. The Cd and Zn phytoremediation potential of several aquatic plant species (Thalia geniculate, Cyperus alternifolius, Canna indica, Eichhornia crassipes, Pistia stratiotes) and one grass species (Vetiveria zizanioides) was evaluated in hydroponic experiments. Vetiveria zizanioides, E. crassipes, and P. stratiotes experienced reduced growth performance in the presence of Cd as determined from biomass production, survival rate, and crown root number (CN); however, they accumulated high quantities of metals in their tissues, particularly in roots. Root accumulation is considered a key characteristic of so-called excluder species. In this study, only E. crassipes and P. stratiotes had bioconcentration factors and translocation factors (> 1000 and < 1, respectively) suitable for high phytostabilization of Cd. Furthermore, V. zizanioides and P. stratiotes showed the highest percent metal uptake from solution and removal capacity for Zn (~70% and ~2 mg d−1 g−1, respectively). Emergent aquatic species (particularly C. alternifolius and T. geniculate) adapted and lived well in Cd- and Zn-contaminated solution and took up high quantities of Cd and Zn in roots, and are therefore considered strong excluders. Beneficial uses of such species in contaminated wetlands include stabilizing toxic metals and limiting erosion. Plant tissue can be applied to other uses, including as a biomass fuel. In field situations, the candidate species may work best when grown together, since each plant genotype possesses a different potential to control Cd and Zn. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Science and Pollution Research Springer Journals

Aquatic plants for phytostabilization of cadmium and zinc in hydroponic experiments

Loading next page...
 
/lp/springer_journal/aquatic-plants-for-phytostabilization-of-cadmium-and-zinc-in-rcU4A0neRa
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Environment; Environment, general; Environmental Chemistry; Ecotoxicology; Environmental Health; Atmospheric Protection/Air Quality Control/Air Pollution; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution
ISSN
0944-1344
eISSN
1614-7499
D.O.I.
10.1007/s11356-018-1714-y
Publisher site
See Article on Publisher Site

Abstract

Cadmium (Cd) may be toxic to aquatic plants even at modest concentrations, and excessive quantities of zinc (Zn) decrease plant performance. The Cd and Zn phytoremediation potential of several aquatic plant species (Thalia geniculate, Cyperus alternifolius, Canna indica, Eichhornia crassipes, Pistia stratiotes) and one grass species (Vetiveria zizanioides) was evaluated in hydroponic experiments. Vetiveria zizanioides, E. crassipes, and P. stratiotes experienced reduced growth performance in the presence of Cd as determined from biomass production, survival rate, and crown root number (CN); however, they accumulated high quantities of metals in their tissues, particularly in roots. Root accumulation is considered a key characteristic of so-called excluder species. In this study, only E. crassipes and P. stratiotes had bioconcentration factors and translocation factors (> 1000 and < 1, respectively) suitable for high phytostabilization of Cd. Furthermore, V. zizanioides and P. stratiotes showed the highest percent metal uptake from solution and removal capacity for Zn (~70% and ~2 mg d−1 g−1, respectively). Emergent aquatic species (particularly C. alternifolius and T. geniculate) adapted and lived well in Cd- and Zn-contaminated solution and took up high quantities of Cd and Zn in roots, and are therefore considered strong excluders. Beneficial uses of such species in contaminated wetlands include stabilizing toxic metals and limiting erosion. Plant tissue can be applied to other uses, including as a biomass fuel. In field situations, the candidate species may work best when grown together, since each plant genotype possesses a different potential to control Cd and Zn.

Journal

Environmental Science and Pollution ResearchSpringer Journals

Published: Mar 17, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off