Approximating incompletely defined utility functions of qualitative multi-criteria modeling method DEX

Approximating incompletely defined utility functions of qualitative multi-criteria modeling... Decision analysis is aimed at supporting people who make decisions in order to satisfy their needs and objectives. The method called DEX is a qualitative multi-criteria decision analysis approach that provides support to decision makers in evaluating and choosing decision alternatives by using discrete attributes and rule-based utility functions. In this work, we extend our previous efforts of approximating complete, monotone DEX utility functions with methods Direct marginals, UTADIS and Conjoint analysis to incompletely defined utility functions. The experiments are performed both on functions obtained by solving real world decision making problems and on artificially created ones. The results show that all three methods provide accurate approximations of incompletely defined DEX utility functions, when the evaluation is done only on rules present in these incompletely defined functions. Among the three methods, the Conjoint analysis method generally has the best performance, however it is closely followed by the Direct marginals method. The Conjoint analysis method also achieves a better performance in approximating fully defined DEX utility functions by using incompletely defined instances of those functions. The UTADIS method performs comparatively well with functions having a high percentage of missing values. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Central European Journal of Operations Research Springer Journals

Approximating incompletely defined utility functions of qualitative multi-criteria modeling method DEX

Loading next page...
 
/lp/springer_journal/approximating-incompletely-defined-utility-functions-of-qualitative-qCdp9e79WH
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2016 by Springer-Verlag Berlin Heidelberg
Subject
Business and Management; Operations Research/Decision Theory
ISSN
1435-246X
eISSN
1613-9178
D.O.I.
10.1007/s10100-016-0451-x
Publisher site
See Article on Publisher Site

Abstract

Decision analysis is aimed at supporting people who make decisions in order to satisfy their needs and objectives. The method called DEX is a qualitative multi-criteria decision analysis approach that provides support to decision makers in evaluating and choosing decision alternatives by using discrete attributes and rule-based utility functions. In this work, we extend our previous efforts of approximating complete, monotone DEX utility functions with methods Direct marginals, UTADIS and Conjoint analysis to incompletely defined utility functions. The experiments are performed both on functions obtained by solving real world decision making problems and on artificially created ones. The results show that all three methods provide accurate approximations of incompletely defined DEX utility functions, when the evaluation is done only on rules present in these incompletely defined functions. Among the three methods, the Conjoint analysis method generally has the best performance, however it is closely followed by the Direct marginals method. The Conjoint analysis method also achieves a better performance in approximating fully defined DEX utility functions by using incompletely defined instances of those functions. The UTADIS method performs comparatively well with functions having a high percentage of missing values.

Journal

Central European Journal of Operations ResearchSpringer Journals

Published: Aug 2, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off