Approximate voronoi cell computation on spatial data streams

Approximate voronoi cell computation on spatial data streams Several studies have exploited the properties of Voronoi diagrams to improve the efficiency of variations of the nearest neighbor search on stored datasets. However, the significance of Voronoi diagrams and their basic building blocks, Voronoi cells, has been neglected when the geometry data is incrementally becoming available as a data stream. In this paper, we study the problem of Voronoi cell computation for fixed 2-d site points when the locations of the neighboring sites arrive as a spatial data stream. We show that the non-streaming solution to the problem does not meet the memory requirements of many realistic scenarios over a sliding window. Hence, we propose AVC-SW, an approximate streaming algorithm that computes (1 + ε )-approximations to the actual exact Voronoi cell in O (κ) where κ is its sample size. With the sliding window model and random arrival of points, we show both analytically and experimentally that for given window size w and parameter k , AVC-SW reduces the expected memory requirements of the classic algorithm from O ( w ) to $$O(k \log (\frac{w}{k} + 1))$$ regardless of the distribution of the points in the 2-d space. This is a significant improvement for most of the real-world scenarios where w ≫ k . The VLDB Journal Springer Journals

Approximate voronoi cell computation on spatial data streams

Loading next page...
Copyright © 2009 by Springer-Verlag
Computer Science; Database Management
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial