Approximate similarity search for online multimedia services on distributed CPU–GPU platforms

Approximate similarity search for online multimedia services on distributed CPU–GPU platforms Similarity search in high-dimensional spaces is a pivotal operation for several database applications, including online content-based multimedia services. With the increasing popularity of multimedia applications, these services are facing new challenges regarding (1) the very large and growing volumes of data to be indexed/searched and (2) the necessity of reducing the response times as observed by end-users. In addition, the nature of the interactions between users and online services creates fluctuating query request rates throughout execution, which requires a similarity search engine to adapt to better use the computation platform and minimize response times. In this work, we address these challenges with Hypercurves, a flexible framework for answering approximate k-nearest neighbor (kNN) queries for very large multimedia databases. Hypercurves executes in hybrid CPU–GPU environments and is able to attain massive query-processing rates through the cooperative use of these devices. Hypercurves also changes its CPU–GPU task partitioning dynamically according to the observed load, aiming for optimal response times. In our empirical evaluation, dynamic task partitioning reduced query response times by approximately 50 % compared to the best static task partition. Due to a probabilistic proof of equivalence to the sequential kNN algorithm, the CPU–GPU execution of Hypercurves in distributed (multi-node) environments can be aggressively optimized, attaining superlinear scalability while still guaranteeing, with high probability, results at least as good as those from the sequential algorithm. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Approximate similarity search for online multimedia services on distributed CPU–GPU platforms

Loading next page...
 
/lp/springer_journal/approximate-similarity-search-for-online-multimedia-services-on-0OtHuCt0fC
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2014 by Springer-Verlag Berlin Heidelberg
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-013-0329-7
Publisher site
See Article on Publisher Site

Abstract

Similarity search in high-dimensional spaces is a pivotal operation for several database applications, including online content-based multimedia services. With the increasing popularity of multimedia applications, these services are facing new challenges regarding (1) the very large and growing volumes of data to be indexed/searched and (2) the necessity of reducing the response times as observed by end-users. In addition, the nature of the interactions between users and online services creates fluctuating query request rates throughout execution, which requires a similarity search engine to adapt to better use the computation platform and minimize response times. In this work, we address these challenges with Hypercurves, a flexible framework for answering approximate k-nearest neighbor (kNN) queries for very large multimedia databases. Hypercurves executes in hybrid CPU–GPU environments and is able to attain massive query-processing rates through the cooperative use of these devices. Hypercurves also changes its CPU–GPU task partitioning dynamically according to the observed load, aiming for optimal response times. In our empirical evaluation, dynamic task partitioning reduced query response times by approximately 50 % compared to the best static task partition. Due to a probabilistic proof of equivalence to the sequential kNN algorithm, the CPU–GPU execution of Hypercurves in distributed (multi-node) environments can be aggressively optimized, attaining superlinear scalability while still guaranteeing, with high probability, results at least as good as those from the sequential algorithm.

Journal

The VLDB JournalSpringer Journals

Published: Jun 1, 2014

References

  • Coyote: a system for constructing fine-grain configurable communication service
    Bhatti, NT; Hiltunen, MA; Schlichting, RD; Chiu, W
  • Searching in high-dimensional spaces: index structures for improving the performance of multimedia databases
    Böhm, C; Berchtold, S; Keim, DA

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off