Approximate regional sequence matching for genomic databases

Approximate regional sequence matching for genomic databases Recent advances in computational biology have raised sequence matching requirements that result in new types of sequence database problems. In this work, we introduce an important class of such problems, the approximate regional sequence matching (ARSM) problem. Given a data and a pattern sequence, an ARSM result is an approximate occurrence of a region of the pattern in the data sequence under two conditions. First, the region must contain a predetermined area of the pattern sequence, termed core . Second, the allowable deviation between the region of the pattern and its occurrence in the data sequence depends on the length of the region. We propose the PS-ARSM method that processes holistically the regions of a pattern, taking advantage of their overlaps to efficiently identify the ARSM results. Its performance is evaluated with respect to existing techniques adapted to the ARSM problem. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Approximate regional sequence matching for genomic databases

Loading next page...
 
/lp/springer_journal/approximate-regional-sequence-matching-for-genomic-databases-90gRMm9syU
Publisher
Springer Journals
Copyright
Copyright © 2012 by Springer-Verlag Berlin Heidelberg
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-012-0270-1
Publisher site
See Article on Publisher Site

Abstract

Recent advances in computational biology have raised sequence matching requirements that result in new types of sequence database problems. In this work, we introduce an important class of such problems, the approximate regional sequence matching (ARSM) problem. Given a data and a pattern sequence, an ARSM result is an approximate occurrence of a region of the pattern in the data sequence under two conditions. First, the region must contain a predetermined area of the pattern sequence, termed core . Second, the allowable deviation between the region of the pattern and its occurrence in the data sequence depends on the length of the region. We propose the PS-ARSM method that processes holistically the regions of a pattern, taking advantage of their overlaps to efficiently identify the ARSM results. Its performance is evaluated with respect to existing techniques adapted to the ARSM problem.

Journal

The VLDB JournalSpringer Journals

Published: Dec 1, 2012

References

  • Average-optimal single and multiple approximate string matching
    Fredriksson, K.; Navarro, G.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off