Approximate regional sequence matching for genomic databases

Approximate regional sequence matching for genomic databases Recent advances in computational biology have raised sequence matching requirements that result in new types of sequence database problems. In this work, we introduce an important class of such problems, the approximate regional sequence matching (ARSM) problem. Given a data and a pattern sequence, an ARSM result is an approximate occurrence of a region of the pattern in the data sequence under two conditions. First, the region must contain a predetermined area of the pattern sequence, termed core . Second, the allowable deviation between the region of the pattern and its occurrence in the data sequence depends on the length of the region. We propose the PS-ARSM method that processes holistically the regions of a pattern, taking advantage of their overlaps to efficiently identify the ARSM results. Its performance is evaluated with respect to existing techniques adapted to the ARSM problem. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Approximate regional sequence matching for genomic databases

Loading next page...
 
/lp/springer_journal/approximate-regional-sequence-matching-for-genomic-databases-90gRMm9syU
Publisher
Springer-Verlag
Copyright
Copyright © 2012 by Springer-Verlag Berlin Heidelberg
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-012-0270-1
Publisher site
See Article on Publisher Site

Abstract

Recent advances in computational biology have raised sequence matching requirements that result in new types of sequence database problems. In this work, we introduce an important class of such problems, the approximate regional sequence matching (ARSM) problem. Given a data and a pattern sequence, an ARSM result is an approximate occurrence of a region of the pattern in the data sequence under two conditions. First, the region must contain a predetermined area of the pattern sequence, termed core . Second, the allowable deviation between the region of the pattern and its occurrence in the data sequence depends on the length of the region. We propose the PS-ARSM method that processes holistically the regions of a pattern, taking advantage of their overlaps to efficiently identify the ARSM results. Its performance is evaluated with respect to existing techniques adapted to the ARSM problem.

Journal

The VLDB JournalSpringer Journals

Published: Dec 1, 2012

References

  • Average-optimal single and multiple approximate string matching
    Fredriksson, K.; Navarro, G.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off