Approximate query processing using wavelets

Approximate query processing using wavelets Approximate query processing has emerged as a cost-effective approach for dealing with the huge data volumes and stringent response-time requirements of today's decision support systems (DSS). Most work in this area, however, has so far been limited in its query processing scope, typically focusing on specific forms of aggregate queries. Furthermore, conventional approaches based on sampling or histograms appear to be inherently limited when it comes to approximating the results of complex queries over high-dimensional DSS data sets. In this paper, we propose the use of multi-dimensional wavelets as an effective tool for general-purpose approximate query processing in modern, high-dimensional applications. Our approach is based on building wavelet-coefficient synopses of the data and using these synopses to provide approximate answers to queries. We develop novel query processing algorithms that operate directly on the wavelet-coefficient synopses of relational tables, allowing us to process arbitrarily complex queries entirely in the wavelet-coefficient domain. This guarantees extremely fast response times since our approximate query execution engine can do the bulk of its processing over compact sets of wavelet coefficients, essentially postponing the expansion into relational tuples until the end-result of the query. We also propose a novel wavelet decomposition algorithm that can build these synopses in an I/O-efficient manner. Finally, we conduct an extensive experimental study with synthetic as well as real-life data sets to determine the effectiveness of our wavelet-based approach compared to sampling and histograms. Our results demonstrate that our techniques: (1) provide approximate answers of better quality than either sampling or histograms; (2) offer query execution-time speedups of more than two orders of magnitude; and (3) guarantee extremely fast synopsis construction times that scale linearly with the size of the data. The VLDB Journal Springer Journals

Approximate query processing using wavelets

Loading next page...
Copyright © 2001 by Springer-Verlag Berlin Heidelberg
Computer Science; Database Management
Publisher site
See Article on Publisher Site

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial