Approximate Quantified Constraint Solving by Cylindrical Box Decomposition

Approximate Quantified Constraint Solving by Cylindrical Box Decomposition This paper applies interval methods to a classical problem in computer algebra. Let a quantified constraint be a first-order formula over the real numbers. As shown by A. Tarski in the 1930's, such constraints, when restricted to the predicate symbols <, = and function symbols +, ×, are in general solvable. However, the problem becomes undecidable, when we add function symbols like sin. Furthermore, all exact algorithms known up to now are too slow for big examples, do not provide partial information before computing the total result, cannot satisfactorily deal with interval constants in the input, and often generate huge output. As a remedy we propose an approximation method based on interval arithmetic. It uses a generalization of the notion of cylindrical decomposition—as introduced by G. Collins. We describe an implementation of the method and demonstrate that, for quantified constraints without equalities, it can efficiently give approximate information on problems that are too hard for current exact methods. Reliable Computing Springer Journals

Approximate Quantified Constraint Solving by Cylindrical Box Decomposition

Loading next page...
Kluwer Academic Publishers
Copyright © 2002 by Kluwer Academic Publishers
Mathematics; Numeric Computing; Approximations and Expansions; Computational Mathematics and Numerical Analysis; Mathematical Modeling and Industrial Mathematics
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial