Applied Nonparametric Regression Techniques: Estimating Prepayments on Fixed-Rate Mortgage-Backed Securities

Applied Nonparametric Regression Techniques: Estimating Prepayments on Fixed-Rate Mortgage-Backed... We assess nonparametric kernel-density regression as a technique for estimating mortgage loan prepayments—one of the key components in pricing highly volatile mortgage-backed securities and their derivatives. The highly nonlinear and so-called irrational behavior of the prepayment function lends itself well to an estimator that is free of both functional and distributional assumptions. The technique is shown to exhibit superior out-of-sample predictive ability compared to both proportional-hazards and proprietary-practitioner models. Moreover, the best kernel model provides this improved predictive power utilizing a more parsimonious specification in terms of both data and covariates. We conclude that the technique may prove useful in other financial modeling applications, such as default modeling, and other derivative pricing problems where highly nonlinear relationships and optionality exist. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Real Estate Finance and Economics Springer Journals

Applied Nonparametric Regression Techniques: Estimating Prepayments on Fixed-Rate Mortgage-Backed Securities

Loading next page...
 
/lp/springer_journal/applied-nonparametric-regression-techniques-estimating-prepayments-on-fhy40ffLNJ
Publisher
Springer Journals
Copyright
Copyright © 2001 by Kluwer Academic Publishers
Subject
Economics; Regional/Spatial Science; Financial Services
ISSN
0895-5638
eISSN
1573-045X
D.O.I.
10.1023/A:1011102332025
Publisher site
See Article on Publisher Site

Abstract

We assess nonparametric kernel-density regression as a technique for estimating mortgage loan prepayments—one of the key components in pricing highly volatile mortgage-backed securities and their derivatives. The highly nonlinear and so-called irrational behavior of the prepayment function lends itself well to an estimator that is free of both functional and distributional assumptions. The technique is shown to exhibit superior out-of-sample predictive ability compared to both proportional-hazards and proprietary-practitioner models. Moreover, the best kernel model provides this improved predictive power utilizing a more parsimonious specification in terms of both data and covariates. We conclude that the technique may prove useful in other financial modeling applications, such as default modeling, and other derivative pricing problems where highly nonlinear relationships and optionality exist.

Journal

The Journal of Real Estate Finance and EconomicsSpringer Journals

Published: Oct 3, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off