Applications of corpus-based semantic similarity and word segmentation to database schema matching

Applications of corpus-based semantic similarity and word segmentation to database schema matching In this paper, we present a method for database schema matching: the problem of identifying elements of two given schemas that correspond to each other. Schema matching is useful in e-commerce exchanges, in data integration/warehousing, and in semantic web applications. We first present two corpus-based methods: one method is for determining the semantic similarity of two target words and the other is for automatic word segmentation. Then we present a name-based element-level database schema matching method that exploits both the semantic similarity and the word segmentation methods. Our word similarity method uses pointwise mutual information (PMI) to sort lists of important neighbor words of two target words; the words which are common in both lists are selected and their PMI values are aggregated to calculate the relative similarity score. Our word segmentation method uses corpus type frequency information to choose the type with maximum length and frequency from “desegmented” text. It also uses a modified forward–backward matching technique using maximum length frequency and entropy rate if any non-matching portions of the text exist. Finally, we exploit both the semantic similarity and the word segmentation methods in our proposed name-based element-level schema matching method. This method uses a single property (i.e., element name) for schema matching and nevertheless achieves a measure score that is comparable to the methods that use multiple properties (e.g., element name, text description, data instance, context description). Our schema matching method also uses normalized and modified versions of the longest common subsequence string matching algorithm with weight factors to allow for a balanced combination. We validate our methods with experimental studies, the results of which suggest that these methods can be a useful addition to the set of existing methods. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Applications of corpus-based semantic similarity and word segmentation to database schema matching

Loading next page...
 
/lp/springer_journal/applications-of-corpus-based-semantic-similarity-and-word-segmentation-0xwlYtiNSh
Publisher
Springer-Verlag
Copyright
Copyright © 2008 by Springer-Verlag
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-007-0067-9
Publisher site
See Article on Publisher Site

Abstract

In this paper, we present a method for database schema matching: the problem of identifying elements of two given schemas that correspond to each other. Schema matching is useful in e-commerce exchanges, in data integration/warehousing, and in semantic web applications. We first present two corpus-based methods: one method is for determining the semantic similarity of two target words and the other is for automatic word segmentation. Then we present a name-based element-level database schema matching method that exploits both the semantic similarity and the word segmentation methods. Our word similarity method uses pointwise mutual information (PMI) to sort lists of important neighbor words of two target words; the words which are common in both lists are selected and their PMI values are aggregated to calculate the relative similarity score. Our word segmentation method uses corpus type frequency information to choose the type with maximum length and frequency from “desegmented” text. It also uses a modified forward–backward matching technique using maximum length frequency and entropy rate if any non-matching portions of the text exist. Finally, we exploit both the semantic similarity and the word segmentation methods in our proposed name-based element-level schema matching method. This method uses a single property (i.e., element name) for schema matching and nevertheless achieves a measure score that is comparable to the methods that use multiple properties (e.g., element name, text description, data instance, context description). Our schema matching method also uses normalized and modified versions of the longest common subsequence string matching algorithm with weight factors to allow for a balanced combination. We validate our methods with experimental studies, the results of which suggest that these methods can be a useful addition to the set of existing methods.

Journal

The VLDB JournalSpringer Journals

Published: Aug 1, 2008

References

  • A comparative analysis of methodologies for database schema integration
    Batini, C.; Lenzerini, M.; Navathe, S.B.
  • Matching records in a national medical patient index
    Bell, G.S.; Sethi, A.
  • Distributional regularity and phonotactics are useful for segmentation
    Brent, M.; Cartwright, T.
  • IGTree: Using trees for compression and classification in lazy learning algorithms
    Daelamans, W.; van den Bosch, A.; Weijters, A.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off