Application of Submodeling Technique in Numerical Modeling of Mechanized Tunnel Excavation

Application of Submodeling Technique in Numerical Modeling of Mechanized Tunnel Excavation This research proposes a novel methodology of applying submodeling technique in the numerical simulation of mechanized tunnel excavation. A submodel is a smaller scale cut out of the full scale model (global model) in which the more in detail simulations along with higher degree of precision are conducted. Apparently, the submodel should include the near field around the TBM that is significantly affected by tunneling process and the region of interest such as ground surface where the model responses have to be surveyed. The appropriate size of the submodel is found by evaluation of the strain energy distribution in the domain while the energy gradient has to fulfill the predefined criterion. To analyze the submodel, the nodal displacements are derived from the global model and applied to the boundaries of the submodel. Using the proposed submodeling technique in the tunneling, the computational costs are reduced, while the submodel provides realistic predic- tion of the deformations in the system and lining forces. Finally, the proposed submodeling method is applied in both 2D and 3D tunneling simulations while two types of submodeling strategy (“fixed submodel” and “moving submodel”) are adopted for the 3D simulations. The results indicate that both approaches are http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Civil Engineering Springer Journals

Application of Submodeling Technique in Numerical Modeling of Mechanized Tunnel Excavation

Loading next page...
 
/lp/springer_journal/application-of-submodeling-technique-in-numerical-modeling-of-SYm6sPDUUM
Publisher
Springer International Publishing
Copyright
Copyright © 2018 by Iran University of Science and Technology
Subject
Engineering; Civil Engineering
ISSN
1735-0522
eISSN
2383-3874
D.O.I.
10.1007/s40999-018-0318-8
Publisher site
See Article on Publisher Site

Abstract

This research proposes a novel methodology of applying submodeling technique in the numerical simulation of mechanized tunnel excavation. A submodel is a smaller scale cut out of the full scale model (global model) in which the more in detail simulations along with higher degree of precision are conducted. Apparently, the submodel should include the near field around the TBM that is significantly affected by tunneling process and the region of interest such as ground surface where the model responses have to be surveyed. The appropriate size of the submodel is found by evaluation of the strain energy distribution in the domain while the energy gradient has to fulfill the predefined criterion. To analyze the submodel, the nodal displacements are derived from the global model and applied to the boundaries of the submodel. Using the proposed submodeling technique in the tunneling, the computational costs are reduced, while the submodel provides realistic predic- tion of the deformations in the system and lining forces. Finally, the proposed submodeling method is applied in both 2D and 3D tunneling simulations while two types of submodeling strategy (“fixed submodel” and “moving submodel”) are adopted for the 3D simulations. The results indicate that both approaches are

Journal

International Journal of Civil EngineeringSpringer Journals

Published: May 31, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off